Skip to main content Accessibility help

Wide Bandgap Materials for Semiconductor Spintronics

  • S. J. Pearton (a1), C. R. Abernathy (a1), G. T. Thaler (a1), R. Frazier (a1), D. P. Norton (a1), J. Kelly (a2), R. Rairigh (a2), A. F. Hebard (a2), Y. D. Park (a3) and J. M. Zavada (a4)...


Existing semiconductor electronic and photonic devices utilize the charge on electrons and holes in order to perform their specific functionality such as signal processing or light emission. The relatively new field of semiconductor spintronics seeks, in addition, to exploit the spin of charge carriers in new generations of transistors, lasers and integrated magnetic sensors. The ability to control of spin injection, transport and detection leads to the potential for new classes of ultra-low power, high speed memory, logic and photonic devices. The utility of such devices depends on the availability of materials with practical (>300K) magnetic ordering temperatures. In this paper, we summarize recent progress in dilute magnetic semiconductors such as (Ga,Mn)N, (Ga,Mn)P and (Zn,Mn)O exhibiting room temperature ferromagnetism, the origins of the magnetism and its potential applications in novel devices such as spin-polarized light emitters and spin field effect transistors.



Hide All
1 Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnar, S., Roukes, M. L., Chtchelkanova, A. Y., and Treger, D. M., Science 294, 1488 (2001).
2. Awschalom, D. D., Loss, D., and Samarth, N., Editors, Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).
3. Ball, P., Nature 404, 918 (2000).
4. Awschalom, D. D. and Kikkawa, J. M., Phys. Today 52, 33 (1999);
Awschalom, D. D., Flatté, M. E., and Samarth, N., Sci. Am. 286, 67 (2002).
5. von Molnar, S. and Read, D., J. Mag. Mag. Mater. 242–245 13(2002).
6. Pearton, S.J., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Norton, D.P., Theodorpoulou, N., Hebard, A. F., Park, Y.D., Ren, F., Kim, J. and Boatner, L.A., J. Appl. Phys. 93 1(2003).
7. Pearton, S.J., Abernathy, C.R., Norton, D.P., Hebard, A.F., Park, Y.D., Boatner, L.A. and Budai, J.D., Mat. Sci. Eng. R 40 137(2003)
8. Baibich, M. et al., Phys. Rev. Lett. 61, 2472 (1988);
Barnas, J., Fuss, A., Camley, R., Grunberg, P., Zinn, W., Phys. Rev. B42, 8110 (1990).
9. Datta, S. and Das, B., Appl. Phys. Lett. 56, 665 (1990).
10. Burkard, G., Loss, D., and DiVincenzo, D. P., Phys. Rev. B 59, 2070 (1999).
11. Semiconductors and Semimetals, Vol. 25: Dilute Magnetic Semiconductors. Series Editors: Willardson, R. K. and Beer, A. C.. Volume Editors: Furdyna, J. K. and Kossut, J. (Academic Press, Boston, 1988);
Furdyna, J. K., J. Appl. Phys., 64, R29 (1988);
Jain, M., Editor, Diluted Magnetic Semiconductors (World Scientific, Singapore, 1991).
12. Ohno, H., Science, 281, 951 (1988), and references therein.
13. Ohno, Y., Young, D. K., Beschoten, B., Matsukura, F., Ohno, H., and Awschalom, D. D., Nature 402, 790 (1999);
Beschoten, B., Crowell, P. A., Malajovich, I., Awschalom, D. D., Matsukura, F., Shen, A., and Ohno, H., Phys. Rev. Lett. 83, 3073 (1999).
14. Ohno, H., et al., Nature 408, 944 (2000).
15. Gopalan, S. and Cottam, M. G., Phys. Rev. B 42, 10311 (1990).
16. Haas, C., Crit. Rev. Solid State Sci. 1, 47 (1970).
17. Suski, T., Igalson, J., and Story, T., J. Magn. Magn. Mater. 66, 325 (1987).
18. Haury, A., Wasiela, A., Arnoult, A., Cibert, J., Tatarenko, S., Dietl, T., Merled'Aubigne, Y., Phys. Rev. Lett. 79, 511 (1997);
Kossacki, P., Ferrand, D., Arnoult, A., Cibert, J., Tatarenko, S., Wasiela, A., Merled'Aubigne, Y., Staihli, J. -L., Ganiere, J. -D., Bardyszewski, W., Swiatek, K., Sawicki, M., Wrobel, J., and Dietl, T., Physica E 6, 709 (2000).
19. Sato, K., Medvedkin, G. A., Nishi, T., Hasegawa, Y., Misawa, R., Hirose, K., and Ishibashi, T., J. Appl. Phys. 89, 7027 (2001).
20. Overberg, M. E., Gila, B. P., Thaler, G. T., Abernathy, C. R., Pearton, S. J., Theodoropoulou, N. A., McCarthy, K. T., Arnason, S. B., Hebard, A. F., Chu, S. N. G., Wilson, R. G., Zavada, J. M., Park, Y. D., J. Vac. Sci. Technol. B 20, 969 (2002).
21. Dietl, T., Ohno, H., Matsukura, F., Cubert, J., and Ferrand, D., Science 287, 1019 (2000).
22. Dietl, T., Haury, A., and Merled'Aubigne, Y., Phys. Rev. B 55, R3347 (1997).
23. 7. Reed, M.L., El-Masry, N.A., Stadelmaier, H., Ritums, M.E., Reed, N.J., Parker, C.A., Roberts, J.C., and Bedair, S.M., Appl. Phys. Lett. 79, 3473 (2001).
24. Theodoropoulou, N., Hebard, A.F., Overberg, M.E., Abernathy, C.R., Pearton, S.J., Chu, S.N.G., and Wilson, R.G., Appl. Phys. Lett. 78, 3475 (2001).
25. Sonoda, S., Shimizu, S., Sasaki, T., Yamamoto, Y. and Hori, H., J. Cryst. Growth 237a239 1358 (2002);
Sasaki, T., Sonoda, S., Yamamoto, Y., Suga, K., Shimizu, S., Kindo, K. and Hori, H., J. Appl. Phys. 91 7911(2002).
26. Thaler, G.T., Overberg, M.E., Gila, B., Frazier, R., Abernathy, C.R., Pearton, S.J., Lee, J.S., Lee, S.Y., Park, Y.D., Khim, Z.G., Kim, J. and Ren, F., Appl. Phys. Lett. 80 3964 (2002).
27. Park, , Lee, H.-J., Cho, Y.C., Jeong, S,-Y., Cho, C.R. and Cho, S., Appl. Phys. Lett. 80, 4187 (2002).
28. Hashimoto, M., Zhou, Y.-K., Kanamura, M., and Asahi, H., Solid State Commun. 122, 37 (2002).
29. Overberg, M.E., Abernathy, C.R., Pearton, S.J., Theodoropoulou, N. A., McCarthy, K.T., Hebard, A.F., Appl. Phys. Lett. 79, 1312 (2001).
30. Kim, K.H., Lee, K.J., Kim, D.J., Kim, H.J., Ihm, Y.E., Djayaprawira, D., Takahashi, M., Kim, C.S., Kim, C.G. and Yoo, S.H., Appl. Phys. Lett. 82 1775(2003).
31. Dhar, S., Brandt, O., Trampert, A., Daweriz, L., Friendland, K.J., Ploog, K.H., Keller, J., Beschoten, B. and Guntherodt, G., Appl. Phys. Lett. 82 2077(2003).
32. Jain, M., Kronik, L., Chelikowsky, J. R., and Godlevsky, V. V., Phys. Rev. B64, 245205 (2001).
33. Kronik, L., Jain, M., and Chelikowsky, J. R., Phys. Rev. B66, R041203 (2002).
34. Soo, Y.L., Kioseouglou, G.., Kim, S., Huang, S., Kaa, Y.H., Kubarawa, S., Owa, S., Kondo, T. and Munekata, H., Appl. Phys. Lett. 79, 3926 (2001);
Sato, M., Tanida, H., Kato, K., Sasaki, T., Yamamoto, Y., Sonoda, S., Shimiyu, S. and Hori, H., J. Jap. Appl. Phys. 41 4513(2002).
35. Kulatov, E., Phys. Rev. B 66 045203(2002).
36. Medvedkin, G.A., Ishibashi, T., Nishi, T. and Hiyata, K., Jap. J. Appl. Phys. 39, L949 (2000).
37. Hashimoto, M., Zhou, Y.-K., Kanamura, M., and Asahi, H., Solid State Commun. 122, 37 (2002).
38. Fukumura, T., Jin, Z., Kawasaki, M., Shono, T., Hasegawa, T., Koshikara, S., Koshihara, S. and Koinuma, H., Appl. Phys. Lett. 78, 958 (2001).
39. Yang, S.G., Pakhomov, A.B., Hung, S.T. and Wong, C.Y., Appl. Phys. Lett. 81, 2418 (2002).
40. Theodoropoulou, N., Hebard, A.F., Overberg, M.E., Abernathy, C.R., Pearton, S.J., Chu, S.N.G., and Wilson, R.G., Phys. Rev. Lett. 89 107203–1(2002).
41. Overberg, M.E., Gila, B.P., Thaler, G.T., Abernathy, C.R., Pearton, S.J., Theodoropoulou, N., McCarthy, K.T., Arnason, S.B., Hebard, A.F., Chu, S.N.G., Wilson, R.G., Zavada, J.M., and Park, Y.D., J. Vac. Sci. Technol. B 20 969 (2002).
42. Cho, S.., Choi, S., Cha, G.B., Hong, S.C., Kim, Y., Zhao, Y.-J., Freeman, A.J., Ketterson, J.B., Kim, B.J., Kim, Y.C. and Choi, B.C., Phys. Rev. Lett. 88 257203–1 (2002).
43. Medvedkin, G.A., Ishibashi, T., Nishi, T. and Hiyata, K., Jap. J. Appl. Phys. 39, L949 (2000).
44. Choi, S., Cha, G.B., Hong, S.C., Cho, S., Kim, Y., Ketterson, J.B., Jeong, S.-Y. and Yi, G.C., Solid-State Commun. 122, 165 (2002).
45. Pearton, S.J., Overberg, , Abernathy, , Theodoropoulou, C.R., N.A., , Hebard, A.F., Chu, S.N.G., Osinsky, A., Zuflyigin, V., Zhu, L.D., Polyakov, A.Y. and Wilson, R.G., J. Appl. Phys. 92 2047(2002).
46. Theodorpoulou, N., Hebard, A.F., Chu, S.N.G., Overberg, M.E., Abernathy, C.R., Pearton, S.J., Wilson, R.G., Zavada, J.M. and Park, Y.D., J. Vac. Sci. Technol. A20 579(2002)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed