Skip to main content Accessibility help
×
Home

What Controls Temperature Dependence of Yield Stress in L12-Ordered Intermetallic Compounds?

  • Haruyuki Inui (a1) and Norihiko L. Okamoto (a1)

Abstract

The temperature dependence of yield stress and the associated dislocation dissociation in L12 intermetallic compounds are investigated in order to check the feasibility of the classification of L12 intermetallic compounds so far made in terms of the planarity of core structures of partial dislocations with b = 1/2<110> and 1/3<112> on {111} and {001} glide planes. In contrast to what is believed from the classification, the motion of APB-coupled dislocations is evidenced to give rise to the rapid decrease in yield stress at low temperatures for Pt3Al. In view of the fact that rapid decrease in yield stress at low temperatures is also observed in Co3(Al,W) and Co3Ti in which APB-coupled dislocations are responsible for deformation, the SISF-type dissociation is not a prerequisite for the rapidly decreasing CRSS for slip on (111) and the relative magnitudes of the APB energy on (111) and the SISF energy on (111) cannot be a primary factor that determines the type of the temperature dependence of CRSS for L12 compounds. The importance of the CSF energy as a factor determining the type of the temperature dependence of yield stress for L12 compounds through the changes in the planarity of the core structure of the APB-coupled partial dislocation with b p = ½[1 $\overline 1$ 0] is discussed in the light of experimental evidence obtained from Pt3Al.

Copyright

References

Hide All
1. Veyssière, P., and Saada, G., in Nabarro, F.R.N., and Duesbery, M.S. (Eds.), Dislocations in Solids, Vol. 10, Elsevier, Amsterdam, 253 (1996).
2. Pope, D.P., and Ezz, S.S., Intl. Metals Rev. 29, 136 (1984).
3. Liu, C.T., and Pope, D.P., in Westbrook, J. H. and Fleischer, R. L. (Eds.), Intermetallic Compounds Principles and Practice Vol. 2,, John Wiley & Sons, Chichester, 17 (1995).
4. Vitek, V., and Paidar, V., in Hirth, J.P., (ed.), Dislocations in Solids, Vol. 14, Elsevier, Amsterdam, 441 (2008).
5. Wee, D.M., and Suzuki, T., Trans. Japan Inst. Metals 20, 634 (1979).
6. Wee, D.M., Noguchi, O., Oya, Y., and Suzuki, T., Trans. Japan Inst. Metals 21, 237 (1980).
7. Wee, D.M., Pope, D.P., and Vitek, V., Acta Metall. 32, 829 (1984).
8. Heredia, F.E., Tichy, G., Pope, D.P., and Vitek, V., Acta Metall. 37, 2755 (1989).
9. Oya-Semiya, Y., Shinoda, T., and Suzuki, T., Mater. Trans. 37, 1464 (1996).
10. Paidar, V., Pope, D.P., and Yamaguchi, M., Scripta Metall. 15, 1029 (1981).
11. Yamaguchi, M., Paidar, V., Pope, D.P., and Vitek, V., Phil. Mag. A 45, 867 (1982).
12. Paidar, V., Yamaguchi, M., Pope, D.P., and Vitek, V., Phil. Mag. A 45, 883 (1982).
13. Paidar, V., Pope, D.P., and Vitek, V., Acta Metall. 32, 435 (1984).
14. Tichy, G., Vitek, V., and Pope, D.P., Phil. Mag. A 53, 467 (1986).
15. Flinn, P.A., Trans. Metal. Soc. AIME 218, 145 (1960).
16. Yoo, M.H., Scripta Metall. 20, 915 (1986).
17. Paxton, A.T., Electron Theory in Pettifor, D.G. and Cottrell, A.H. (Eds.), Alloy Design, Institute of Materials, London, 158 (1992).
18. Gornostyrev, Y.N., Kontsevoi, Y., Freeman, A.J., Katsnelson, M.I., Trefilov, A.V., and Lichtenshtein, A.I., Phys. Rev. B 70, 014102 (2004).
19. Okamoto, N.L., Oohashi, T., Adachi, H., Kishida, K., Inui, H., and Veyssiere, P., Phil. Mag. 28, 3667 (2011).
20. Inui, H., and Okamoto, N.L., MRS Symp. Proc., 1295, 405 (2011).
21. Okamoto, N.L., Hasegawa, Y., Hashimoto, W., and Inui, H., Phil. Mag. 93, 60 (2013).
22. Okamoto, N.L., Inomoto, M., Adachi, H., Takebayashi, H., and Inui, H., Phil. Mag. 94, 1327 (2014).
23. Ngan, A.H.W., Jones, I.P., and Smallman, R.E., Phil. Mag. A65, 1003 (1992).
24. Ngan, A.H.W., Jones, I.P., and Smallman, R.E., Phil. Mag. A66, 55 (1992).
25. Wee, D. M., Pope, D. P., and Vitek, V., Acta Metall. 32, 829 (1984).
26. Heredia, F. E., Tichy, G., Pope, D. P., and Vitek, V., Acta Metall. 37, 2755 (1989).
27. Oya-Seimiya, Y., Shinoda, T., and Suzuki, T., Mater. Trans. JIM 37, 1464 (1996).
28. Kontsevoi, O. Y., Gornostyrev, Y. N., Maksyutov, A. F., Khromov, K. Y., and Freeman, A. J., Metall. Mater. Trans. A36, 559 (2005).
29. Jax, Kratochv.P, P., and Haasen, P., Acta Metall. 18, 237 (1970).
30. Paxton, A. T., and Sun, Y. Q., Philos. Mag. A78, 85 (1998).
31. Liu, J. B., Johnson, D. D., and Smirnov, A. V., Acta Mater. 53, 3601 (2005).

Keywords

What Controls Temperature Dependence of Yield Stress in L12-Ordered Intermetallic Compounds?

  • Haruyuki Inui (a1) and Norihiko L. Okamoto (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed