Skip to main content Accessibility help
×
Home

Wafer Scale Nanopatterning and Nanomaterials Synthesis of Functional Nano Probes for Atomic Force Microscopy

  • Qi Laura Ye (a1), Alan M. Cassell (a1), Hongbing Liu (a1) and M. Meyyappan (a1)

Abstract

The key hurdle in nanoscience and nanotechnology is the large-scale integration of nanoscale materials with micron scale electronics and structures to form functional devices and sensors. We have developed an innovative bottom-up wafer scale fabrication method that combines nanopatterning and nanomaterials synthesis with traditional silicon micromachining technologies. We have achieved nano-micro integration through catalyst nanopatterning and registration at wafer scale and through effective nanocatalyst protection and release before and after microfabrication. Our wafer scale fabrication process has produced 244 carbon nanotube (CNT) probes per 4-inch silicon wafer with control over the CNT location, diameter, length, orientation, and crystalline morphology. CNT probes with diameters of 40-80 nm and lengths of 2-6 μm are found to be functional nano probes for atomic force microscopy (AFM) imaging. In this paper, we will address our nano probe design and fabrication considerations in detail. CNT tip locations and diameters are defined by e-beam lithography. CNT length, orientation, and crystalline quality are controlled by the plasma enhanced chemical vapor deposition (PECVD) method. With effective catalyst protection schemes, this fabrication process is very similar to the conventional approach for fabricating wafer-scale silicon AFM probe tips. Process control is feasible and the overall yield is greatly improved. Our method and technology can be easily adapted to many other nanomaterials (nanotubes and nanowires) synthesis and processes for their rational design, fabrication, and integration in their applications.

Copyright

Corresponding author

*Corresponding author: e-mail: qye@mail.arc.nasa.gov, phone: (650) 604-0497, fax: (650) 604-0987

References

Hide All
1. Dresselhaus, M. S.; Dresselhaus, G.; Avouris, Ph. (Eds.). Carbon Nanotubes, Topics Appl. Phys. 2001, 80, Springer.
2. Dai, H.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; and Smalley, R. E. Nature 1996, 384, 147.
3. Nguyen, C. V.; Chao, K.; Stevens, R. M.; Delzeit, L.; Cassell, A.; Han, J.; and Meyyappan, M. Nanotech. 2001, 12, 363.
4. Nguyen, C. V.; So, C.; Stevens, R. M.; Li, Y.; Delzeit, L.; Sarrazin, P.; and Meyyappan, M. J. Phys. Chem. B 2004, 108, 2816.
5. Nguyen, C. V.; Stevens, R. M. D.; Barber, J.; Han, J.; and Meyyappan, M. App. Phys. Lett. 2002, 81, 901.
6. Wong, S. S.; Harper, J. D.; Lansbury, P. T. Jr; and Lieber, C. M. J. Am. Chem. Soc. 1998, 120, 603.
7. Nishijima, H.; Kamo, S.; Akita, S.; and Nakayama, Y. App. Phys. Lett. 1999, 74, 4061.
8. Stevens, R. M.; Nguyen, C. V.; and Meyyappan, M. IEEE Trans. on Nanobioscience 2004, 3, 56.
9. Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; and Lieber, C. M. Nature 1998, 394, 52.
10. Wong, S. S.; Woolley, A. T.; Joselevich, E.; Cheung, C. L.; and Lieber, C. M. J. Am. Chem. Soc. 1998, 120, 8557.
11. Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; and Han, J. App. Phys. Lett. 2000, 77, 3453.
12. Hafner, J. H.; Cheung, C. L.; and Lieber, C. M. Nature 1999, 398, 761.
13. Hafner, J. H.; Cheung, C. L.; and Lieber, C. M. J. Am. Chem. Soc. 1999, 121, 9750.
14. Cheung, C. L.; Hafner, J. H.; and Lieber, C. M. PNAS 2000, 97, 3809.
15. Franklin, N. R.; Li, Y.; Chen, R. J.; Javey, A.; and Dai, H. App. Phys. Lett. 2001, 79, 4571.
16. Yenilmez, E.; Wang, Q.; Chen, R. J.; Wang, D.; and Dai, H. App. Phys. Lett. 2002, 80, 2225.
17. Cassell, A. M.; Ye, Q.; Cruden, B. A.; Li, J.; Sarrazin, P. C.; Ng, H. T.; Han, J.; and Meyyappan, M. Nanotech. 2004, 15, 9.
18. Cassell, A. M.; Ng, H. T.; Delzeit, L.; Ye, Q.; Li, J.; Han, J.; and Meyyappan, M. Appl. Cat. A: General 2003, 254, 85.
19. Lee, S. I.; Howell, S. W.; Raman, A.; Reifenberger, R.; Nguyen, C. V.; and Meyyappan, M. Nanotech. 2004, 15, 416.
20. Yu, M. F.; Kowalewski, T.; and Ruoff, R. S. Phys. Rev. Lett. 2000, 85, 1456.
21. Hertel, T.; Martel, R.; and Avouris, P. J. Phys. Chem. B 1998, 102, 910.
22. Ruoff, R. S.; Qian, D.; and Liu, W. K. C. R. Physique, 2003, 4, 993.

Related content

Powered by UNSILO

Wafer Scale Nanopatterning and Nanomaterials Synthesis of Functional Nano Probes for Atomic Force Microscopy

  • Qi Laura Ye (a1), Alan M. Cassell (a1), Hongbing Liu (a1) and M. Meyyappan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.