Skip to main content Accessibility help
×
Home

W2B based High Thermal Stability Ohmic Contacts to n-GaN

  • Rohit Khanna (a1), S J Pearton (a2), C J Kao (a3), I I Kravchenko (a4), F Ren (a5), G C Chi (a6), A Dabiran (a7) and A Osinsky (a8)...

Abstract

A novel metallization scheme for Ohmic contact (Ti/Al/ W2B /Ti/Au) to n-GaN using high temperature boride was studied using contact resistance, scanning electron microscopy and Auger Electron Spectroscopy measurements. A minimum contact resistance of 7×10-6 Ω.cm2 was achieved for W2B based scheme at an annealing temperature of 800 °C. Contact resistances were found to be essentially independent of measurement temperature, indicating that tunneling plays a dominant role in the current transport. The outdiffusion of Ti to the surface at temperatures of ∼500°C, and at 800°C the onset of intermixing of Al within the contact was found to occur. By 1000°C, the contact showed a reacted appearance and AES showed almost complete intermixing of the metallization. The reliability measurements for the contact resistance of W2B based contact showed excellent stability for extended periods at 200°C, which simulates the type of device operating temperature that might be expected for operation of GaN-based power electronic devices.

Copyright

References

Hide All
1. Sun, J., Fatima, H., Koudymov, A., Chitnis, A., Hu, X., Wang, H.-M., Zhang, J., Simin, G., Yang, J., and Khan, M.A., IEEE Electron Dev. Lett., 24, 375 (2003).
2. Zhang, A.P., Rowland, L.B., Kaminsky, E.B., Kretchmer, J.W., Beaupre, R.A., Garrett, J.L., Tucker, J.B., Edward, B.J., Foppes, J. and Allen, A.F., Solid-State Electron., 47 821(2003).
3. Zhang, A.P., Rowland, L.B., Kaminsky, E.B., Tilak, V., Grande, J.C., Teetsov, J., Vertiatchikh, A. and Eastman, L.F., J. Electron. Mater, 32 388(2003).
4. Kumar, V., Zhou, L., Selvanathan, D., and Adesida, I., J. Appl. Phys., 92, 1712 (2002)
5. Motayed, Abhishek, Bathe, Ravi, Wood, Mark C., Diouf, Ousmane S., Vispute, R. D., and Noor Mohammad, S., J. Appl. Phys., 93, 1087 (2003)
6. Burm, Jinwook, Chu, Kenneth, Davis, William A., Schaff, William J., Eastman, Lester F., and Eustis, Tyler J., Appl. Phys. Lett., 70, 464 (1997)
7. Lin, M. E., Ma, Z., Huang, F. Y., Fan, Z. F., Allen, L. H., and Morkoç, H., Appl. Phys. Lett., 64, 1003 (1994).
8. Luther, B. P., Mohney, S. E., Jackson, T. N., Asif Khan, M., Chen, Q., and Yang, J. W., Appl. Phys. Lett., 70, 57 (1997).
9. Fan, Zhifang, Noor Mohammad, S., Kim, Wook, Aktas, Özgür, Botchkarev, Andrei E., and Morkoç, Hadis, Appl. Phys. Lett., 68, 1672 (1996)
10. Ruvimov, S., Liliental-Weber, Z., Washburn, J., Qiao, D., Lau, S. S., and Chu, Paul K., Appl. Phys. Lett., 73, 2582 (1998).
11. Bright, A. N., Thomas, P. J., Weyland, M., Tricker, D. M., Humphreys, C. J., and Davies, R., J. Appl. Phys., 89, 3143 (2001).
12. Papanicolaou, N. A., Rao, M. V., Mittereder, J., and Anderson, W. T., J. Vac. Sci. Technol. B, 19, 261 (2001).
13. Liu, Q. Z. and Lau, S. S., Solid-State Electronics, 42, 677691 (1998).
14. Li, R., Cai, S. J., Wong, L., Chen, Y., Wang, K. L., Smith, R. P., Martin, S. C., Boutros, K. S., Redwing, J. M., IEEE Electron Device Letters, 20, 323 (1999).
15. Sheppard, S. T., Doverspike, K., Pribble, W. L., Allen, S. T., Palmour, J. W., Kehias, L. T., Jenkins, T. J., IEEE Electron Device Letters, 20, 161 -163 (1999).
16. Qiao, D., Guan, Z. F., Carlton, J., Lau, S. S., and Sullivan, G. J., Appl. Phys. Lett., 74, 2652 (1999)
17. Tilak, V., Dimitov, R., Murphy, M., Green, B., Smart, J., Schaft, W. J., Shealy, J. R. and Eastman, L. F., Mat. Res. Soc. Symp. Proc., 622, T7.4.1 (2000).
18. Lim, S.-H., Washburn, J., Liliental-Weber, Z., and Qiao, D., Appl. Phys. Lett., 78, 3797 (2001).
19. Asif Khan, M., Shur, M. S. and Chen, Q., Appl. Phys. Lett., 68, 3022(1996).
20. Murai, S., Masuda, H., Koide, Y., and Masanori Murakami, Appl. Phys. Lett., 80, 2934 (2002)
21. Lu, Changzhi, Chen, Hongnai, Lv, Xiaoliang, Xie, Xuesong, and Noor Mohammad, S., J. Appl. Phys., 91, 9218 (2002)
22. Foresi, J. S. and Moustakus, T. D., Appl. Phys. Lett., 62, 2859(1993).
23. Fay, M. W., Moldovan, G., Brown, P. D., Harrison, I., Birbeck, J. C., Hughes, B. T., Uren, M. J., and Martin, T., J. Appl. Phys., 92, 94 (2002).
24. Schweitz, K. O., Wang, P. K., Mohney, S. E., and Gotthold, D., Appl. Phys. Lett., 80, 1954 (2002).
25. Cole, M. W., Eckart, D. W., Han, W. Y., Pfeffer, R. L., Monahan, T., Ren, F., Yuan, C., Stall, R. A., Pearton, S. J., Li, Y. and Lu, Y., J. Appl. Phys., 80, 278 (1996).
26. Zeitouny, A., Eizenberg, M., Pearton, S. J., and Ren, F., J. Appl. Phys., 88, 2048 (2000).
27. Selvanathan, D., Mohammed, F.M., Tesfayesus, A. and Adesida, I., J. Vac. Sci. Technol., B22 2409(2004).
28. Luo, B., Ren, F., Fitch, R.C., Gillespie, J.K., Jenkins, T., Sewell, J., Via, D., Crespo, A., Baca, A.G., Briggs, R.D., Gotthold, D., Birkhahn, R., Peres, B. and Pearton, S.J., Appl. Phys. Lett., 82, 3910 (2003).
29. Jang, H.W. and Lee, J.-L., J. Appl. Phys., 93, 5416(2003).
30. Fitch, R.C., Gillespie, J.K., Moser, N., Jenkins, T., Sewell, J., Via, D., Crespo, A., Dabiran, A.M., Chow, P.P., Osinsky, A., LaRoche, J.R., Ren, F. and Pearton, S.J., Appl. Phys. Lett., 84, 1495 (2004).
31. Fitch, R.C., Gillespie, J.K., Moser, N., Jenkins, T., Sewell, J., Via, D., Crespo, A., Dabiran, A.M., Chow, P.P., Osinsky, A., LaRoche, J.R., Ren, F. and Pearton, S.J., J. Vac. Sci. Technol., B22, 619(2004).
32. Selvanathan, D., Zhou, L., Kumar, V., Adesida, I. and Finnegan, N., J. Electron. Mater., 32 335(2003).
33. Cao, X. A., Pearton, S. J., Dang, G., Zhang, A. P., Ren, F., and Van Hove, J. M., Appl. Phys. Lett., 75, 4130 (1999).
34. Padovani, F.A. and Stratton, R., Solid-State Electron., 9 695 (1966).
35. Cole, M. W., Ren, F., and Pearton, S. J., J. Electrochem. Soc. 144, L275 (1997).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed