Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-23T01:55:01.105Z Has data issue: false hasContentIssue false

W, WSix and Ti/Al Low Resistance Ohmic Contacts to InGaN, InN and InAlN

Published online by Cambridge University Press:  10 February 2011

C.B. Vartuli
Affiliation:
Department of Materials Science and Engineering University of Florida, Gainesville FL 32611
S.J. Pearton
Affiliation:
Department of Materials Science and Engineering University of Florida, Gainesville FL 32611
C.R. Abernathy
Affiliation:
Department of Materials Science and Engineering University of Florida, Gainesville FL 32611
J.D. MacKenzie
Affiliation:
Department of Materials Science and Engineering University of Florida, Gainesville FL 32611
R.J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185–0603
J.C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185–0603
M.L. Lovejoy
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185–0603
A.G. Baca
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185–0603
M. Hagerott-Crawford
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185–0603
Get access

Abstract

W, WSi0.44 and Ti/Al contacts were examined on n+ In0.65Ga0.35N, InN and In0.75Al0.25N. W was found to produce low specific contact resistance (Qc ˜ 10−7 Ω cm2) ohmic contacts to InGaN, with significant reaction between metal and semiconductor at 900 °C mainly due to out diffusion of In and N. WSix showed an as-deposited Qc of 4×10−7 Ω cm2 but this degraded significantly with subsequent annealing. Ti/Al contacts were stable to Ω 600 °C (Qc, ˜ 4×10−7 Ω cm2 at ≤600 °C). The surfaces of these contacts remain smooth to 800 °C for W and WSix and 650 °C for Ti/Al. InN contacted with W and Ti/Al produced ohmic contacts with Qc ˜ 10−7 Ω cm2 and for WSix Qc ˜ Ω cm2.All remained smooth to ˜ 600 °C, but exhibited significant interdiffusion of In, N, W and Ti respectively at higher temperatures. The contact resistances for all three metallization schemes were ≥ 10−4 Ω.cm2 on InAIN, and degrades with subsequent annealing. The Ti/Al was found to react with the InA1N above 400 °C, causing the contact resistance to increase rapidly. W and WSix proved to be more stable with Qc ˜ 10−2 and 10−3 Ω cm2 up to 650 °C and 700 °C respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 30, L1708 (1991).Google Scholar
2. Binari, S.C., Rowland, L.B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D.K., Electron. Lett. 30, 1248 (1994).Google Scholar
3. Khan, M.A., Shur, M.S., and Chen, Q., Electron. Lett. 31, 2130 (1995).Google Scholar
4. Khan, M.A., Kuznia, J.N., Bhattarai, A.R., and Olson, D.T., Appl. Phys. Lett. 62, 1248 (1993).Google Scholar
5. Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett. 62 2390 (1993).Google Scholar
6. Akasaki, I., Amano, H., Kito, M., and Kiramatsu, K., J. Lumin. 48/49, 666 (1991).Google Scholar
7. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Appl. Phys. Lett. 67, 1868 (1995).Google Scholar
8. Zolper, J.C., Baca, A.G., Shul, R.J., Wilson, R.G., Pearton, S.J. and Stall, R.A., Appl. Phys. Lett. 68, 166 (1996).Google Scholar
9. Forsei, J.S. and Moustakas, T.D., Appl. Phys. Lett. 62 2859 (1993).Google Scholar
10. Khan, M.A., Kuznia, T.N., Bhattaraia, A.R. and Olson, D.T., Appl. Phys. Lett. 62 1786 (1993).Google Scholar
11. Nakamura, S., Mukai, T. and Senoh, M., Jpn. J. Appl. Phys. 30 L1998 (1991).Google Scholar
12. Binari, S.C., Rowland, L.B., Kruppa, W., Kelner, G., Doverspike, K. and Gaskill, D.K, Electron. Lett. 30 1248 (1994).Google Scholar
13. Nakamura, S., Senoh, M. and Mukai, T., Appl. Phys. Lett. 62 2390 (1993).Google Scholar
14. Lin, M.E., Ma, Z., Huang, F.Y., Fan, Z.F., Allen, L.A. and Morkoe, H., Appl. Phys. Lett. 64 1003 (1994).Google Scholar
15. Cole, M.W., Eckart, D.W., Monahan, T., Pfeffer, R.L., Han, W.Y., Ren, F., Yuan, C., Stall, R.A., Pearton, S.J., Li, Y. and Lu, Y., J. Appl. Phys. (in press).Google Scholar
16. Durbha, A., “Study of Ohmic Contacts on Gallium Nitride Thin Films” Master thesis.Google Scholar
17. Lin, M.E., Huang, F.Y. and. Morkoc, , Appl. Phys. Lett. 64 2557 (1994).Google Scholar
18. Ren, F., Abernathy, C.R., Chu, S.N.G., Lothian, J.R. and Pearton, S.J., Appl. Phys. Lett. 66 1503 (1995).Google Scholar
19. Ren, F., Abernathy, C.R., Pearton, S.J. and Wisk, P.W., Appl. Phys. Lett. 64 1508 (1994).Google Scholar
20. Ren, F., Abernathy, C.R., Chu, S.N.G., Lothian, J.R. and Pearton, S.J., Appl. Phys. Lett 66 1503 (1995).Google Scholar
21. Smith, L.L. and Davis, R.F., in Properties of Group III Nitrides, ed. Edgar, J.H., EMIS Datareview (INSPEC, London 1994).Google Scholar
22. Abernathy, C.R., J. Vac. Sci. Technol. A 11 869 (1993).Google Scholar
23. Abernathy, C.R., Mat. Sci. Eng. Rep. 14, 203 (1995).Google Scholar
24. Shul, R.J., Kilcoyne, S.P., Hagerott-Crawford, M., Parmeter, J.E., Vartuli, C.B., Abernathy, C.R. and Pearton, S.J., Appl. Phys. Lett. 66 1761 (1995).Google Scholar