Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T17:56:10.700Z Has data issue: false hasContentIssue false

Volatile, Fluorine-Free β-Ketoiminate Precursors for MOCVD Growth of Lanthanide Oxide Thin Films

Published online by Cambridge University Press:  10 February 2011

N.L. Edleman
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113
J.A. Belot
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113
J.R. Babcock
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113
A.W. Metz
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113
M.V. Metz
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113
C.L. Stern
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113
T.J. Marks
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, tjmarks@casbah.acns.nwu.edu
Get access

Abstract

Lanthanide oxide thin films are of increasing scientific and technological interest to the materials science community. A new class of fluorine-free, volatile, low-melting lanthanide precursors for the metal-organic chemical vapor deposition (MOCVD) of these films has been developed. Initial results from a full synthetic study of these lanthanide-organic complexes are detailed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lewkebandara, T.S., Winter, C.H., Chemtracts- Inorg. Chem. p. 271 (1994).Google Scholar
2 Suzuki, M., Ami, T., Mater. Sci. Eng. B 41, p. 166 (1996).Google Scholar
3 Inoue, T., Yamamoto, Y., Satoh, M., Ide, A., Katsumata, S., Thin Solid Films 282, p. 24 (1996).Google Scholar
4 Wu, X.D., Dye, R.C., Muenchausen, R.E., Foltyn, S.R., Maley, M., Rollett, A.D., Garcia, A.R., Nogar, N.S., Appl. Phys. Lett. 58, p. 2165 (1991).Google Scholar
5 Macmanus-Driscoll, J.L., Adv. Mater. 9, p.457 (1997).Google Scholar
6 Wang, X.Z, Wessels, B.W., Appl. Phys. Lett. 67, p. 518 (1995).Google Scholar
7 Rack, P.D., Naman, A., Holloway, P.H., Sun, S.S., Tuenge, R.T., MRS Bull. 21, p. 49 (1996).Google Scholar
8 Ronda, C.R., Justel, T., Nikol, H., J. Alloys Cornpd.. 277, p. 669 (1998).Google Scholar
9 McAleese, J., Plakatouras, J.C., Steele, B.C.H., Thin Solid Films 280, p. 152 (1996).Google Scholar
10 Kodas, T., Hampden-Smith, M., The Chemistry Of Metal CVD, VCH, Weinheim, 1994.Google Scholar
11 Dahmen, K.-H., Gerfin, T., Progress in Crystal Growth and Characterization of Materials 27, p. 117 (1993).Google Scholar
12 Marks, T.J., Pure and Appl. Chem. 67, p. 313 (1995).Google Scholar
13 Belot, J.A., Neumayer, D.A., Reedy, C.J., Studebaker, D.B., Hinds, B.J., Stern, C.L., Marks, T.J., Chem. Mater. (Chem. Vap. Dep.) 9, p. 1638 (1997).Google Scholar
14 Babcock, J.R., Benson, D.D., Wang, A., Edleman, N.L., Belot, J.A., Metz, M.V., Marks, T.J., Adv. Mater. (Chem. Vap. Dep.), in press.Google Scholar
15 Nukeaw, J., Tanagisawa, J., Matsubara, N., Fujiwara, Y., Takeda, Y., Appl. Phys. Lett. 70, p. 84 (1997).Google Scholar
16 Becht, M., Gerfin, T., Dahmen, K.H., Chem. Mater. 5, p. 137(1993).Google Scholar
17 Graboy, I.E., Markov, N.V., Maleev, V.V., Kaul, A.R., Polyakov, S.N., Svetchnikov, V.L., Zandbergen, H.W., Dahmen, K.H., J. Alloys Compd. 251, p. 318 (1997).Google Scholar
18 Hiskes, R., DiCarolis, S.A., Jacowitz, R.D., Lu, Z., Fiegelson, R.S., Ronte, R.K., Young, J.L., J. Cryst. Growth 128, p.781 (1993).Google Scholar
19 Becht, M., Wang, F., Wen, J.G., Morishita, T., J. Cryst. Growth 170, p. 799 (1997).Google Scholar
20 Lu, Z., Hiskes, R., DiCarolis, S.A., Nel, A., Ronte, R.K., Fiegelson, R.S., J. Cryst. Growth 156, p. 227 (1995).Google Scholar
21 Liang, S., Chern, C.S., Shi, Z.Q., Lu, P.. Lu, Y., Kear, B.H., J. Cryst. Growth 151, p.359(1995).Google Scholar
22 Chadwick, D., McAleese, J., Senkiw, K., Steele, B.C.H., Appl. Surf. Sci. 99, p. 417 (1996).Google Scholar
23 Belot, J.A., Wang, A., McNeely, R.J., Liable-Sands, L., Rheingold, A.L., Marks, T.J., Adv. Mater. (Chem. Vap. Dep.) 5, p. 65 (1999).Google Scholar
24 Schulz, D.L., Hinds, B.J., Neumayer, D.A., Stern, C.L., Marks, T.J., Chem. Mater. 5, p. 1605 (1993).Google Scholar
25 Wang, A., Belot, J.A., Marks, T.J., Markworth, P.R., Chang, R.P.H., Chudzik, M.P., Kannewurf, C.R., Physica C 320, p. 154 (1999).Google Scholar
26 Bradley, D.C., Ghorta, J.S., Hart, F.A., J. Chem. Soc, Dalton Trans., p. 1021 (1973).Google Scholar
27 The applicability of this analysis is explained in Hinds, B.J., McNeely, R.J., Studebaker, D.B., Marks, T.J., Hogan, T.P., Schindler, J.L., Kannewurf, C.R., Zhang, X.F., Miller, D.J., J. Mater. Res. 12, p. 1214 (1997).Google Scholar
28 Purchased from Strem Chemicals, Inc., Newburyport, MA 01950-4098.Google Scholar