Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T00:56:29.731Z Has data issue: false hasContentIssue false

Voids Investigation of Amorphous Carbon Films Deposited by DC-Magnetron Sputtering: A Small Angle x-ray Scattering and Gas Thermal Effusion Study

Published online by Cambridge University Press:  10 February 2011

F.L. Freire Jr.
Affiliation:
Departamento de Física, PUC-Rio, Rio de Janeiro, 22452-970, RJ, Brazil
L.G. Jacobsohn
Affiliation:
Instituto de Fisica, UFF, Niterói, 24210-340, RJ, Brazil
D.F. Franceschini
Affiliation:
Instituto de Fisica, UFF, Niterói, 24210-340, RJ, Brazil
S.S. Camargo Jr.
Affiliation:
PEMM-COPPE/UFRJ, Rio de Janeiro, 21945-970, RJ, Brazil
Get access

Abstract

Amorphous carbon films were deposited onto (100) Si crystals and onto ultra-pure Al foils by dc-magnetron sputtering with different Ar plasma pressures, from 0.17 to 1.4 Pa. We investigate the voids structure and the voids density in these films by means of small angle x-ray scattering (SAXS) and mass spectrometry of effused gases. The analysis of the effusion spectra provided clear evidence that films deposited at lower pressures are compact, while the films deposited at higher pressure present a more open structural arrangement, confirming density results obtained by using ion beam techniques. SAXS results reveal that the fraction of open volumes increases with the plasma pressure: a direct correlation between film density and open volume fraction is found. These different film microstructures could be explained by the existence of different bombarding regimes during film growth

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Grill, A., Diamond Relat. Mater. 8, 428 (1999).Google Scholar
[2] Lifshitz, Y., Kasi, S.R., Rabalais, J.W. and Eckstein, W., Phys. Rev. B 41, 10468 (1990).Google Scholar
[3] Savvides, N. and Window, B., J. Vac. Sci. Technol. A 3, 2386 (1985).Google Scholar
[4] Rubin, M., Hopper, C. B., Cho, N-H. and Bhushan, B., J. Mater Res. 5, 2538 (1990).Google Scholar
[5] Mounier, E. and Pauleau, Y., J. Vac. Sci. Technol A 14, 2535 (1996).Google Scholar
[6] Taga, Y. and Takahashi, R., Surf. Sci. 386, 231 (1997).Google Scholar
[7] Jacobsohn, L.G. and Freire, F.L. Jr., J. Vac. Sci. Technol. A 17, 2841 (1999).Google Scholar
[8] Alvarez, F., Victoria, N.M., Hammer, P., Freire, F.L. Jr. and Santos, M.C. dos, Appl. Phys. Lett. 73, 1065 (1998).Google Scholar
[9] Stief, R., Schäfer, J., Ristein, J., Ley, L. and Beyer, W., J. Non Cryst. Solids 198–200, 636 (1996).Google Scholar
[10] Jiang, X., Beyer, W. and Reichelt, K., J. Appl. Phys. 68, 1378 (1990).Google Scholar
[11] Glatter, O. and Kratky, O., Small Angle x-ray Scattering (Academic Press, New York, 1982).Google Scholar
[12] Guinier, A. and Foumet, G., Small Angle Scattering ofx-rays (J. Wiley and Sons, Inc., New York, 1955).Google Scholar