Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-11T11:44:08.228Z Has data issue: false hasContentIssue false

Void Evolution via Coupled Creep, Diffusion and Electromigration in Confined Nano-interconnects

Published online by Cambridge University Press:  26 February 2011

Dongchoul Kim
Affiliation:
eastsage@umich.edu, University of Michigan, Mechanical Engineering, 2250 GGBrown Bldg, Ann Arbor, MI, 48109, United States
Wei Lu
Affiliation:
weilu@umich.edu, University of Michigan, Mechanical Engineering, Ann Arbor, MI, 48109, United States
Get access

Abstract

A three dimensional electromigration model is presented to account for void evolution in small scale interconnects. The model provides better understanding of the evolution process by considering concurrent kinetics of creep flow and surface diffusion. The multiple kinetics and energetics are incorporated into a diffusive interface model. Simulations show that a shape stable in surface diffusion can become unstable in a creep dominated process, which leads to a quite different void morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bhate, D. N., Kumar, A., and Bower, A. F., J. Appl. Phys. 87, 1712 (2000).Google Scholar
2. Fridline, D. R. and Bower, A. F., J. Appl. Phys. 85, 3168 (1999).Google Scholar
3. Wang, W. Q., Suo, A., and Hao, T. H., J. Appl. Phys. 79, 2394 (1996).Google Scholar
4. Proost, J., Delaey, L., D'Haen, J. et al. , J. Appl. Phys. 91, 9108 (2002).Google Scholar
5. Suo, Z., J. Appl. Mech. 71, 646 (2004).Google Scholar
6. Kim, D. and Lu, W., Phys. Rev. B 73, 035206 (2006).Google Scholar
7. Cahn, J. W., J. Chem. Phys. 28, 258 (1958).Google Scholar
8. Gurtin, M. E., Polignone, D., and Viñals, J., Math. Mod. Meth. App Sci. 6, 815 (1996).Google Scholar
9. Zhu, J., Chen, L.-Q., Shen, J. et al. , Phys. Rev. E 60, 3564 (1999).Google Scholar
10. Ascher, U. M., Ruuth, S. J., and Wetton, B. T. R., SIAM J. Numer. Annal. 30, 797 (1995).Google Scholar
11. Mahadevan, M. and Bradley, R., J. Appl. Phys. 79, 6840 (1996).Google Scholar