Skip to main content Accessibility help

Visible Luminescence from Silicon: Quantum Confinement or Siloxene?

  • M. S. Brandt (a1), H. D. Fuchs (a1), A. Höpner (a1), M. Rosenbauer (a1), M. Stutzmann (a1), J. Weber (a1), M. Cardona (a1) and H. J. Queisser (a1)...


The discovery of strong visible photoluminescence at room temperature from porous silicon has triggered new hope that light-emitting devices compatible with existing Si-technology might become possible. We first review the luminescence behavior observed in silicon-based materials such as amorphous Si, microcrystalline Si, or SiO2. We then critically discuss the present model for the luminescence from porous silicon based on quantum confinement in view of the growing experimental evidence for the importance of both hydrogen and oxygen to obtain efficient luminescence from this material. We propose an alternative explanation based on the presence of siloxene (SieO3H6) in porous silicon which is corroborated by experimental results obtained with photoluminescence, Raman and IR spectroscopy. An important aspect is that siloxene can be prepared by methods different from anodic oxidation, and one particular technique will be described together with possible ways to tune the luminescence energy.



Hide All
[1] Haynes, J. R. and Westphal, W. C., Phys. Rev. 101, 1676 (1956).
[2] Newman, R., Phys. Rev. 100, 700 (1955).
[3] Härtung, J., Hansson, L. A., and Weber, J., in Proc. of the 20th Intern. Conf. on Physics of Semiconductors, ed. Anastassakis, E. M. and Joannopoulos, J. D. (World Scientific, Singapore, 1990), p. 1875.
[4] Betzler, K., Weiler, T., and Conradt, R., Phys. Rev. B 6, 1394 (1972).
[5] Steele, A. G., McMullan, W. G., and Thewalt, M. L. W., Phys. Rev. Lett. 59, 2899 (1987).
[6] Davies, G., Phys. Rep. 176, 83 (1989).
[7] Canham, L. T., Barraclough, K. G., and Robbins, D. J., Appl. Phys. Lett. 51, 1509 (1987).
[8] Moutonnet, D., L'Haridon, H., Favennec, P. N., Salvi, M., Gauneau, M., Arnaud d'Avitaya, F., and Chroboczek, J., Mat. Sci. and Eng. B4, 75 (1989).
[9] Furukawa, S. and Miyasato, T., Jpn. J. Appl. Phys. 27, L2207 (1988).
[10] DiMaria, D. J., Kirtley, J. R., Pakulis, E. J., Dong, D. W., Kuan, T. S., Pesavento, F. L., Theis, T. N., Cutro, J. A., and Brorson, S. D., J. Appl. Phys. 56, 401 (1984).
[11] Boulitrop, F., Chenevas-Paule, A., and Dunstan, D. J., Solid State Comm. 48, 181 (1983).
[12] Depinna, S. P., Homewood, K., Cavenett, B. C., Austin, I. G., Searle, T. M., Willeke, G., and Kinmond, S., Phil. Mag. B 47, L57 (1983).
[13] Miller, R. D. and Michl, J., Chem. Rev. 89, 1359 (1989).
[14] Harrah, L. A. and Zeigler, J. M., Macromolecules 20, 601 (1987).
[15] Furukawa, K., Fujino, M., and Matsumoto, N., Macromolecules 23, 3423 (1990).
[16] Wilson, W. L. and Wiedman, T. W., J. Phys. Chem 95, 4568 (1991).
[17] Wolford, D. J., Reimer, J. A., Scott, B. A., Appl. Phys. Lett. 42, 369 (1983).
[18] Matsumoto, N., Furukawa, S., and Takeda, K., Solid State Comm. 53, 881 (1985).
[19] Street, R. A., in Hydrogenattd Amorphous Silicon, edited by Pankove, J. I., Vol. 21B of Semiconductors and Semimetals (Academic, Orlando, 1984), p. 197
[20] Lim, K. S., Konagai, M., and Takahashi, K., Jpn. J. Appl. Phys. 21, L437 (1982).
[21] Wilson, B. A., Phys. Rev. B 23, 3102 (1981).
[22] Street, R. A. and Knights, J. C., Phil. Mag. B 42, 551 (1980).
[23] Sigei, G. H., Friebele, E. J., Ginther, R. J., and Griscom, D. L., IEEE Trans. Nuc. Science 21, 56 (1974).
[24] Itoh, C., Tanimura, K., and Itoh, N., J. Phys. C 21, 4693 (1988).
[25] Stathis, J. H. and Kastner, M. A., Phys. Rev. B 35, 2972 (1987).
[26] Gee, C. M. and Kastner, M., Phys. Rev. Lett. 42, 1765 (1979).
[27] Murray, C. A. and Greytak, T. J., Phys. Rev. B 20, 3368 (1979).
[28] Pickering, C, Beale, M. I. J., Robbins, D. J., Pearson, P. J., and Greef, R., J. Phys. C 17, 6535 (1984).
[29] Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).
[30] Fathauer, R. W., George, T., Ksendzov, A., and Vasquez, R. P., Appl. Phys. Lett. 60, 995 (1992).
[31] Wöhler, F., Lieb. Ann. 127, 257 (1863).
[32] Kautsky, H., Z. Anorg. Chemie 117, 209 (1921).
[33] Hengge, E., Ang. Chemie 74, 501 (1962).
[34] Zachai, R., Eberl, K., Abstreiter, G., Kasper, E., and Kibbel, H., Phys. Rev. Lett. 64, 1055 (1990).
[35] Schmid, U., Christensen, N. E., and Cardona, M., Phys. Rev. Lett. 65, 2610 (1990).
[36] Wight, D. R., J. Phys. D 10, 431 (1977).
[37] Kautsky, H. and Herzberg, G., Z. anorg. Chemie 139, 135 (1924).
[38] Uhlir, A., Bell System Tech. J. 35, 333 (1956).
[39] Brus, L. E., J. Chem. Phys. 80, 4403 (1984).
[40] Campbell, I. H. and Fauchet, P. M., Solid State Comm. 58, 739 (1986).
[41] Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Comm. 81, 307 1992,
Fuchs, H. D., Brandt, M. S., Stutzmann, M., and Weber, J., MRS Proc. 256 (1992), in print, and references therein.
[42] Stutzmann, M., Weber, J., Brandt, M. S., Fuchs, H. D., Rosenbauer, M., Deak, P., Höpner, A., and Breitschwerdt, A., Adv. Solid State Physics 32 (Vieweg, Braunschweig, 1992), in print.
[43] Weiss, A., Beil, G., and Meyer, H., Z. Naturforsch. 34b, 25 (1979).
[44] Morar, J. F. and Wittmer, M., Phys. Rev. B 37, 2618 (1988).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed