Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T22:45:14.365Z Has data issue: false hasContentIssue false

Vibrational Energy Transfer in High Explosives: Nitromethane

Published online by Cambridge University Press:  10 February 2011

Xiaoyu Hong
Affiliation:
School of Chemical Sciences, University of Illinois, Urbana, IL 61801, Correspondence to Dana D.Dlott, Box 37 Noyes Lab, 505 S. Mathews Ave., Urbana, IL 61801, d-dlott @ UIUC.EDU
Jeffrey R. Hill
Affiliation:
School of Chemical Sciences, University of Illinois, Urbana, IL 61801, Correspondence to Dana D.Dlott, Box 37 Noyes Lab, 505 S. Mathews Ave., Urbana, IL 61801, d-dlott @ UIUC.EDU
Dana D. Dlott
Affiliation:
School of Chemical Sciences, University of Illinois, Urbana, IL 61801, Correspondence to Dana D.Dlott, Box 37 Noyes Lab, 505 S. Mathews Ave., Urbana, IL 61801, d-dlott @ UIUC.EDU
Get access

Abstract

Time resolved vibrational spectroscopy with picosecond tunable mid-infrared pulses is used to measure the rates and investigate the detailed mechanisms of multiphonon up-pumping and vibrational cooling in a condensed high explosive, nitromethane. Both processes occur on the ˜100 ps time scale under ambient conditions. The mechanisms involve sequential climbing or descending the ladder of molecular vibrations. Efficient intermolecular vibrational energy transfer from various molecules to the symmetric stretching excitation of NO2 is observed. The implications of these measurements for understanding shock initiation to detonation and the sensitivities of energetic materials to shock initiation are discussed briefly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dlott, D. D. and Fayer, M. D., J. Chem. Phys. 92, 3798 (1990); A.Tokmakoff, M. D.Fayer, and D. D.Dlott, J. Phys. Chem. 97, 1901 (1993).Google Scholar
2. Chen, S., Tolbert, W. A. and Dlott, D. D., J. Phys. Chem. 98, pp. 77597766 (1994).Google Scholar
3. Chen, S., Hong, X., Hill, J. R. and Dlott, D. D., J. Phys. Chem. 99, pp. 45254530 (1995).Google Scholar
4. Pastine, D. J., Edwards, D. J., Jones, H. D., Richmond, C. T. and Kim, K., in High-Pressure Science and Technology, v. 2, edited by Timmerhaus, K. D. and Barber, M. S. (Plenum, New York, 1979), p. 364.Google Scholar
5. (a) Coffey, C. S., and Toton, E. T., J. Chem. Phys. 76, 949 (1982); (b) F. J. Zerilli,; and E. T. Toton, Phys. Rev. B 29, 5891 (1984).Google Scholar
6. Bardo, R. D., Int. J. Quantum Chem. Symp. 20, 455 (1986).Google Scholar
7. Seeley, G. and Keyes, T. J., J. Chem. Phys. 91, 5581 (1989); B.-C.Xu and R. M.Stratt, J.Chem. Phys. 92, 1923 (1990).Google Scholar
8. Melius, C. F., J. Phys. (Paris) C 4, 341 (1987).Google Scholar
9. Zel'dovich, Y. B. and Raiser, Y. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, (Academic Press, New York, 1966), Vols. 1 and 2.Google Scholar
10. Tarver, C. and Calef, D., Lawrence Livermore Tech. Rept. UCRL-52000-88-1.2, Energy and Technology Review Jan-Feb 1988, 1.Google Scholar
11. Fried, L. E. and Ruggerio, A. J., J. Phys. Chem. 98, 9786 (1994).Google Scholar
12. Kramers, H. A., Physica (Utrecht) 7, 284 (1940).Google Scholar
13. Chandler, D. W. and Ewing, G. E., J. Chem. Phys. 73, 4904 (1980).Google Scholar
14. Hong, X., Chen, S., and Dlott, D. D., J. Phys. Chem. 99, pp. 91029109 (1995).Google Scholar
15. Laubereau, A., and Kaiser, W., Rev. Mod. Phys. 50, 607 (1978).Google Scholar
16. Chen, S., Lee, I-Y. S., Tolbert, W., Wen, X. and Dlott, D. D., I. Phys. Chem., 96, pp. 7178–7186 (1992).Google Scholar