Skip to main content Accessibility help
×
Home

Vertically Aligned Mn-doped Fe3O4 Nanowire Arrays: Magnetic Properties and Gas Sensing at Room Temperature

  • Seon Oh Hwang (a1), Chang Hyun Kim (a1), Yoon Myung (a2), Seong-Hun Park (a1), Jeunghee Park (a3), Chang Soo Hahn (a4) and Jae-Young Kim (a5)...

Abstract

Vertically-aligned Mn (10%)-doped Fe3O4 (Fe2.7Mn0.3O4) nanowire arrays were produced by the reduction/substitution of pre-grown Fe2O3 nanowires. These nanowires were ferromagnetic with a Verwey temperature of 129 K. X-ray magnetic circular dichroism measurements revealed that the Mn2+ ions preferentially occupy the tetrahedral sites, substituting for the Fe3+ ions. We observed that the Mn substitution decreases the magnetization, but increases the electrical conductivity. We developed highly sensitive gas sensors using these nanowire arrays, operating at room temperature, whose sensitivity showed a correlation with their bond strength of diatomic/triatomic molecules. Based on the fact that the sensitivity was highest toward water vapor, an excellent-performance humidity sensor was fabricated.

Copyright

References

Hide All
1. Hu, J., Odom, T. W., Lieber, C. M., Acc. Chem. Res. 1999, 32, 435. (b) M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature (London) 2002, 415, 617. (c) X. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Nature (London) 2003, 421, 241.10.1021/ar9700365
2. Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., Molnár, S. von, Roukes, M. L., Chtchelkanova, A. Y., Treger, D. M., Science 2001, 294, 1488.
3. Ishikawa, M., Tanaka, H., Kawai, T., Appl. Phys. Lett. 2006, 86, 222504.10.1063/1.1942640
4.a) Tripathy, D., Adeyeye, A. O., Boothroyd, C. B., Piramanayagam, S. N., J. Appl. Phys. 2007, 101, 013904. b) M. -S. Lee, T. –Y. Kim, C. -S. Lee, J. –C. Park, Y. I. Kim, D. Kim, J. Magn. Magn. Mater. 2004, 268, 62.10.1063/1.2404469
5. Kim, C. H., Chun, H. J., Kim, D. S., Kim, S. Y., Park, J., Moon, J. Y., Lee, G., Yoon, J., Jo, Y., –H. Jung, M., Jung, S. I., Lee, C. J., Appl. Phys. Lett. 2006, 89, 223103.10.1063/1.2393165
6.a) Verwey, E. J. W., Heilmann, E. L., J. Chem. Phys. 1947, 15, 174. b) J. M. Hastings, L. M. Corliss, Phys. Rev. 1956, 104, 328. c) S. Suga, S. Imada, J. Electron Spectrosc. Relat. Phemon. 1998, 92, 1. d) V. N. Antonov, B. N. Harmon, A. N. Yaresko, Phys. Rev. B 2003, 67, 024417. e) E. Kravtsov, D. Haskel, A. Cady, A. Yang, C. Vittoria, X. Zuo, V. G. Harris, Phys. Rev. B 2006,74, 104114. f) Z. Szotek, W. M. Temmerman, D. Ködderitzsch, A. Svane, L. Petit, H. Winter, Phys. Rev. B 2006, 74, 174431. g) C. I. Pearce, C. M. B. Henderson, R. A. D. Pattrick, G. van der Laan, D. J. Vaughan, Am. Miner. 2006, 91, 880.10.1063/1.1746464
7. Ishikawa, M., Tanaka, H., Kawai, T., Appl. Phys. Lett. 2006, 86, 222504.10.1063/1.1942640
8. Štichauer, L., Mirone, A., Turchini, S., Prosperi, T., Zennaro, S., Zema, N., Lama, F., Pontin, R., Šimša, Z., Tailhades, Ph., Bonningue, C., J. Appl. Phys. 2001, 90, 2511.10.1063/1.1389519

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed