Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T00:29:02.417Z Has data issue: false hasContentIssue false

Velocity Overshoot And Ballistic Electron Transport In Wurtzite Indium Nitride

Published online by Cambridge University Press:  10 February 2011

B. E. Foutz
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
S. K. O'leary
Affiliation:
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180–3590
M. S. Shur
Affiliation:
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180–3590
L. F. Eastman
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
U. V. Bhapkar
Affiliation:
Naval Surface Warfare Center, Code T44, Building 1470, Dahlgren, Virginia 22448
Get access

Abstract

Using an ensemble Monte Carlo approach, ballistic transport and velocity overshoot effects are examined in InN and compared with those in GaN and GaAs. It is found that the peak overshoot velocity is in general greater than both GaN and GaAs. Furthermore, the velocity overshoot in InN occurs over distances in excess of 0.4 μm, which is comparable to GaAs but is significantly longer than the overshoot in GaN. These strong overshoot effects, combined with a high peak drift velocity, large low-field mobility, and large saturation drift velocity, should allow InN based field effect transistors to outperform their GaN and GaAs based counterparts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pearton, S. J. and Kuo, C., Mater. Res. Bull. 22 (2), 17 (1997).10.1557/S0883769400032516Google Scholar
[2] Mohammad, S. N., Salvador, A. A., and Morkoç, H., Proc. IEEE 83, 1306 (1995).10.1109/5.469300Google Scholar
[3] Zolper, J. C. and Shul, R. J., Mater. Res. Bull. 22 (2), 36 (1997).10.1557/S0883769400032553Google Scholar
[4] Shur, M. S. and Khan, M. A., Mater. Res. Bull. 22 (2), 44 (1997).10.1557/S0883769400032565Google Scholar
[5] Khan, M. A., Chen, Q., Yang, J. W., Shur, M. S., Dermott, B. T., and Higgins, J. A., IEEE Electron Device Lett., 17, 325 (1996).10.1109/55.506356Google Scholar
[6] Khan, M. A., Chen, Q., Shur, M. S., Dermott, B. T., Higgins, J. A., Burm, J., Schaff, W. and Eastman, L. F., Electronics Lett., 32, 357 (1996).10.1049/el:19960206Google Scholar
[7] Khan, M. A., Chen, Q., Shur, M. S., Dermott, B. T., Higgins, J. A., Burm, J., Schaff, W., and Eastman, L. F., IEEE Electron Device Lett. 17, 584 (1996).10.1109/55.545778Google Scholar
[8] Nakamura, S., Mater. Res. Bull. 22 (2), 29 (1997).10.1557/S088376940003253XGoogle Scholar
[9] Foutz, B. E., Eastman, L. F., Bhapkax, U. V., and Shur, M. S., Appl. Phys. Lett. 70, 2849, (1997).10.1063/1.119021Google Scholar
[10] Lugli, P. and Ferry, D. K., IEEE Trans. Electron Dev. 32, 2431 (1985).10.1109/T-ED.1985.22291Google Scholar
[11] Bhapkar, U. V. and Shur, M. S., J. Appl. Phys. 82, 1649 (1997).10.1063/1.365963Google Scholar
[12] Chin, V. W. L., Tansley, T. L., and Osotchan, T., J. Appl. Phys. 75, 7365 (1994).10.1063/1.356650Google Scholar
[13] Mohammad, S. N. and Morkoç, H., Prog. Quant. Electron. 20,361 (1996).10.1016/S0079-6727(96)00002-XGoogle Scholar
[14] Shur, M., Gelmont, B., and Khan, M. A., J. Electron. Mater. 25, 777 (1996).10.1007/BF02666636Google Scholar
[15] Tansley, T. L. and Foley, C. P., J. Appl. Phys. 59, 3241 (1986).10.1063/1.336906Google Scholar
[16] Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969).10.1063/1.1652845Google Scholar
[17] Lambrecht, W. R. L. and Segall, B., in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, edited by Edgar, J. H. (Inspec, London, 1994), p. 141.Google Scholar
[18] Lambrecht, W. R. L. and Segall, B., in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, edited by Edgar, J. H. (Inspec, London, 1994), p. 151.Google Scholar
[19] Morkoý, H., Unlu, H., and Ji, G., Principles and Technology of MODFETs, Volume 2, (John Wiley and Sons, Chichester, England, 1991), p. 368.Google Scholar