Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T11:54:33.393Z Has data issue: false hasContentIssue false

Variations of Electron Traps in MBE AlxGa1−xAs by Rapid Thermal Processing

Published online by Cambridge University Press:  21 February 2011

H. Ueda
Affiliation:
Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
A. Kitagawa
Affiliation:
Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Y. Tokuda
Affiliation:
Aichi Institute of Technology, Yakusa, Toyota 470-03, Japan
A. Usami
Affiliation:
Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
T. Wada
Affiliation:
Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
H. Kano
Affiliation:
Toyota Central Research and Development Laboratory Inc., Nagakute, Aichi 480-11, Japan
Get access

Abstract

Using deep level transient spectroscopy we have studied the variations of electron traps in molecular beam epitaxial (MBE) AlxGa1−xAs by rapid thermal processing (RTP) using halogen lamps. RTP was performed at 700, 800 and 900 °C for 6s under a SiO2 cap and a capless condition. It is found that during RTP the electron traps with the thermal activation energies of 0.89 and 0.99 eV are produced in Al0.lGa0.9As and Al0.3Ga0.7As, respectively. The thermal activation energies of these traps are close to the reported ones for the trap EL2 in AlxGaM1−xAs. Therefore, these traps are probably related to the trap EL2. In the RTP samples under a capless condition, the concentrations of the trap EL2 in AlxGa1−xAs (x=0.1, 0.3) decreases from the surface to the deeper position in MBE layers, while the depth profile of the trap EL2 in GaAs is flat. It is suggested that the origin of the trap EL2 formation in AlxGa1−xAs is different from one in GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilson, R. G., Evans, C. A. Jr., Norberg, J. C., Hopkins, C. G., and Park, Y. S., J. Appl. Phys. 54, 6868 (1983).Google Scholar
2. Yamahata, S., Adachi, S., and Ishibashi, T., J. Appl. Phys. 60, 2814 (1986).Google Scholar
3. Kitagawa, A., Usami, A., Wada, T., and Tokuda, Y., J. Appl. Phys. 63, 414 (1988).Google Scholar
4. Kitagawa, A., Usami, A., Wada, T., Tokuda, Y., and Kano, H., J. Appl. Phys. 61, 1215 (1987).Google Scholar
5. Katayama, M., Usami, A., Wada, T., and Tokuda, Y., J. Appl. Phys. 62, 528 (1987).CrossRefGoogle Scholar
6. Lang, D. V., J. Appl. Phys. 45, 3023 (1974).Google Scholar
7. Tokuda, Y., Shimizu, N., and Usami, A., Jpn. J. Appl. Phys. 18, 309 (1979).Google Scholar
8. Lang, D. V., Cho, A. Y., Gossard, A. C., Ilegems, M., and Wiegmann, W., J. Appl. Phys. 47, 2558 (1976).Google Scholar
9. Yamanaka, K., Naritsuka, S., Kanamoto, K., Mihara, M., and Ishii, M., J. Appl. Phys. 61, 5062 (1987).Google Scholar
10. Naritsuka, S., Yamanaka, K., Mannoh, M., Mihara, M., and Ishii, M., Jpn. J. Appl Phys. 24, 1324 (1985).Google Scholar
11. Naritsuka, S., Yamanaka, K., Mihara, M., and Ishii, M., Jpn. J. Appl. Phys. 23, L112 (1984).Google Scholar
12. Martin, G. M., Mitonneau, A., and Mircea, A., Electron. Lett. 13, 191 (1977).Google Scholar
13. Baraff, G. A. and Schluter, M., Phys. Rev. Lett. 55, 2340 (1985).Google Scholar
14. Bardeleben, H. J. von, Stievenard, D., Bourgoin, J. C., and Huber, A., Semi-Insulating III-V Materials, p355 (1986).Google Scholar
15. Johnson, N. M., Burnham, R. D., Fekete, D., and Yingling, R. D., in ‘Defects in Semiconductors’ MRS Symp. Proc. 2, p481 (1981).Google Scholar
16. Vincent, G. and Bois, D., Solid State Commun. 27, 431 (1978).Google Scholar