Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-25T10:31:52.785Z Has data issue: false hasContentIssue false

Valencies of Mn impurities in ZnO

Published online by Cambridge University Press:  15 March 2011

L. Petit
Affiliation:
Computer Science and Mathematics Division, and Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
T. C. Schulthess
Affiliation:
Computer Science and Mathematics Division, and Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
A. Svane
Affiliation:
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
W.M. Temmerman
Affiliation:
Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
Z. Szotek
Affiliation:
Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
Get access

Abstract

We use the self-interaction corrected (SIC) local spin-density (LSD) approximation to investigate the groundstate valency configuration of Mn impurities in p-type ZnO. In Zn1−xMnxO, we find the localized Mn2+ configuration to be preferred energetically. When codoping Zn1−xMnxO with N, we find that four d-states stay localized at the Mn site, while the remaining d-electron charge transfers into the hole states at the top of the valence bands. If the Mn concentration [Mn] is equal to the N concentration [N], this results in a scenario without carriers to mediate long range order. If on the other hand [N] is larger than [Mn], the N impurity band is not entirely filled, and carrier mediated ferromagnetism becomes theoretically possible.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., Molnaŕ, S. von, Roukes, M. L., Chtchelkanova, A. Y., and Treger, D. M., Science 294, 1488 (2001).Google Scholar
[2] Fukumura, T., Jin, Zhengwu, Ohtomo, A., Koinuma, H., and Kawasaki, M., Appl. Phys. Lett. 75, 3366 (1999).Google Scholar
[3] Fukumura, T., Jin, Zhengwu, Kawasaki, M., Shono, T., Hasegawa, T., Koshihara, S., and Koinuma, H., Appl. Phys. Lett. 78, 958 (2001).Google Scholar
[4] Tiwari, A., Jin, C., Kvit, A., Kumar, D., Muth, J. F., and Narayan, J., Solid State Commun. 121, 371 (2002).Google Scholar
[5] Sharma, P., Gupta, A., Rao, K. V., Owens, F. J., Sharma, R., Ahuja, R., Guillen, J. M. O., Johansson, B., and Gehring, G. A., Nature materials 2, 673 (2003).Google Scholar
[6] Lawes, G., Ramirez, A. P., Risbud, A. S., and Seshadri, Ram, cond-mat/0403196.Google Scholar
[7] Kim, Y. M., Yoon, M., Park, I.-W., Park, Y. J., and Lyou, Jong H., Solid State Commun. 129, 175 (2004).Google Scholar
[8] Joseph, M., Tabata, H., and Kawai, T., Jpn. J. Appl. Phys. 38, L1205 (1999).Google Scholar
[9] Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
[10] Sato, K., and Katayama-Yoshida, H., Semicond. Sci. Technol. 17, 367 (2002).Google Scholar
[11] Spaldin, N. A., Phys. Rev. B 69, 125201 (2004).Google Scholar
[12] Uspenskii, Yu., Kulatov, E., Mariette, H., Nakayama, H., and Ohta, H., JMMM 258–259, 248 (2003).Google Scholar
[13] Svane, A., Phys. Rev. B 53, 4275 (1996).Google Scholar
[14] Temmerman, W. M., Svane, A., Szotek, Z. and Winter, H., in Electronic Density Functional Theory: Recent Progress and New Directions, eited by Dobson, J. F., Vignale, G. and Das, M. P. (Plenum, New York, 1998), p. 327.Google Scholar
[15] Zunger, A., Perdew, J. P., and Oliver, G. L., Solid State Commun. 34, 933 (1980).Google Scholar
[16] Dorain, P. B., Phys. Rev. 112, 1058 (1985).Google Scholar