Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-22T23:14:46.493Z Has data issue: false hasContentIssue false

Vacuum Ultraviolet Annealing of Tantalum Oxide Films Deposited at Room Temperature by Photo-Induced Cvd

Published online by Cambridge University Press:  10 February 2011

J.-Y. Zhang
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London WCIE 7JE, U.K
I.W. Boyd
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London WCIE 7JE, U.K
Get access

Abstract

In this paper, we report the effect of vacuum ultraviolet (VUV) annealing of tantalum oxide films deposited on Si (100) and quartz at room temperature by photo-induced chemical vapour deposition using excimer lamps. The influences of annealing pressure and temperature on the structural and optical properties have been studied using ellipsometry, Fourier transform infrared spectroscopy (FTIR) and UV spectrophotometry. Under optimum annealing conditions, the refractive index of the films was found to be around 2.15, while a dielectric constant of 24, a breakdown field of 2.3 MV/cm and an optical transmittance in the visible region of the spectrum greater than 85% were obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kim, I.L., Kim, J.S., Kwon, O.S., Ahn, S.T., Chun, J.S. and Lee, W.J., J. Electron. Mater. 24, p. 1435 (1995).10.1007/BF02655461Google Scholar
2 Laviale, D., Oberlin, J.C., and Devine, R.A.B., Appl. Phys. Lett. 65, p. 2021 (1994).10.1063/1.112781Google Scholar
3 Zhang, J.-Y., Fang, Q., and Boyd, I.W., Appl. Surf. Sci. 138–139, p. 320 (1999).10.1016/S0169-4332(98)00413-9Google Scholar
4 Shinriki, H., Kisu, T., Kimura, S., Nishioka, Y., Kawamoto, Y., and Mukai, K., IEEE Trans. Electron. Dev. 37, p. 1939 (1990).10.1109/16.57154Google Scholar
5 Zhang, J.-Y., Bie, L.-J., and Boyd, I.W., Jpn. J. Appl. Phys. 37, p. L27 (1998).10.1143/JJAP.37.L27Google Scholar
6 Zhang, J.-Y., Lim, B., Dusastre, V., and Boyd, I.W., Appl. Phys. Lett. 73, p. 2299 (1998).10.1063/1.121803Google Scholar
7 Tanimoto, S., Matsui, M., Kamisako, K., Kuroiwa, K., and Tarui, Y., J. Electrochem. Soc. 139, p. 320 (1992).10.1149/1.2069193Google Scholar
8 Nishimura, Y., Tokunaga, K. and Tsuji, M., Thin Solid Films 226, p. 144 (1993).10.1016/0040-6090(93)90220-JGoogle Scholar
9 Yamagishi, K. and Tarui, Y., Jpn. J. Appl. Phys. 25, p. L306 (1986).10.1143/JJAP.25.L306Google Scholar
10 Boyd, I.W. and Zhang, J.-Y., Nucl. Instr. Methods in Phys. Res. B 121, p. 349 (1997).10.1016/S0168-583X(96)00538-1Google Scholar
11 Zhang, J.-Y., Thesis, University of Karlsruhe, Germany, 1993.Google Scholar
12 Zhang, J.-Y., Lim, B., and Boyd, I.W., Thin Solid Films 336, p. 340 (1998).10.1016/S0040-6090(98)01303-0Google Scholar
13 Demiryont, H., Sites, J.R., and Geib, K., Applied Optics 24, p. 490 (1985).10.1364/AO.24.000490Google Scholar
14 Tauc, J., Amorphous and Liquid Semiconductor, (Plenum, New York, 1974).10.1007/978-1-4615-8705-7Google Scholar
15 Tauc, J., Grigorovich, R., and Vancu, A., Phys. Stat. Sol. 15, p. 627 (1966).10.1002/pssb.19660150224Google Scholar
16 Chopra, N., Mansingh, A., Chadha, G.K., J. Non. Cryst. Solids 126, p. 194 (1990).10.1016/0022-3093(90)90819-8Google Scholar