Skip to main content Accessibility help

The Vacancy Effect on Thermal Interface Resistance between Aluminum and Silicon by Molecular Dynamics

  • Yingying Zhang (a1), Xin Qian (a1), Zhan Peng (a1) and Nuo Yang (a1)


Thermal transport across interfaces is an important issue for microelectronics, photonics, and thermoelectric devices and has been studied both experimentally and theoretically in the past. In this paper, thermal interface resistance (1/G) between aluminum and silicon with nanoscale vacancies was calculated using non-equilibrium molecular dynamics (NEMD). Both phonon-phonon coupling and electron-phonon coupling are considered in calculations. The results showed that thermal interface resistance increased largely due to vacancies. The effect of both the size and the type of vacancies is studied and compared. And an obvious difference is found for structures with different type/size vacancies.


Corresponding author

*Corresponding author: N.Y. (E-mail: and


Hide All

Y.Z. and X.Q. contributed equally to this work.



Hide All
1. Swartz, E. T. and Pohl, R. O., Rev. Mod. Phys. 61 (3), 605-668 (1989).
2. Cahill, D. G., Braun, P. V., Chen, G., Clarke, D. R., Fan, S., Goodson, K. E., Keblinski, P., King, W. P., Mahan, G. D., Majumdar, A., Maris, H. J., Phillpot, S. R., Pop, E. and Shi, L., Appl. Phys. Rev. 1 (1), 011305 (2014).
3. Landry, E. S. and McGaughey, A. J. H., Phys. Rev. B 80 (16), 165304 (2009).
4. Chalopin, Y., Esfarjani, K., Henry, A., Volz, S. and Chen, G., Phys. Rev. B 85 (19), 195302 (2012).
5. Stevens, R. J., Zhigilei, L. V. and Norris, P. M., Int. J. Heat Mass Tran. 50, 39773989 (2007).
6. Cruz, C. A. d., Chantrenne, P. and Kleber, X., J. Heat Transf. 134, 062402 (2012).
7. Komarov, P. L., Burzo, M. G., Kaytaz, G. and Raad, P. E., Microelectr. J. 34 (12), 1115-1118 (2003).
8. Wang, Y., Ruan, X. and Roy, A. K., Phys. Rev. B 85 (20), 205311 (2012).
9. Xu, J. and Fisher, T. S., Int. J. Heat Mass Tran. 49, 16581666 (2006).
10. Yang, N., Luo, T., Esfarjani, K., Henry, A., Tian, Z., Shiomi, J., Chalopin, Y., Li, B. and Chen, G., J. Compt. Theor. NanoSci. (to be published in 2015), arXiv: 1401.5550.
11. Collins, K. C., Chen, S. and Chen, G., Appl. Phys. Lett. 97 (8), 083102 (2010).
12. Hopkins, P. E., Phinney, L. M., Serrano, J. R. and Beechem, T. E., Phys. Rev. B 82 (8), 085307 (2010).
13. Hopkins, P. E., Duda, J. C., Petz, C. W. and Floro, J. A., Phys. Rev. B 84, 035438 (2011).
14. Majumdar, A. and Reddy, P., Appl. Phys. Lett. 84 (23), 4768-4770 (2004).
15. Minnich, A. J., Johnson, J. A., Schmidt, A. J., Esfarjani, K., Dresselhaus, M. S., Nelson, K. A. and Chen, G., Phys. Rev. Lett. 107, 095901 (2011).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed