Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T23:31:31.867Z Has data issue: false hasContentIssue false

Vacancies in electron irradiated 6H silicon carbide studied by positron annihilation spectroscopy

Published online by Cambridge University Press:  01 February 2011

C. H. Lam
Affiliation:
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
C. C. Ling
Affiliation:
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
C. D. Beling
Affiliation:
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
S. Fung
Affiliation:
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
H. M. Weng
Affiliation:
Department of Physics, University of Science and Technology of China, Hefei, China
D. S. Hang
Affiliation:
Department of Physics, University of Nanjing, Nanjing, China E-mail correspondence: ccling@hku.hk
Get access

Abstract

Positron lifetime spectroscopy was employed to study the as-electron-irradiated (10 MeV, 1×1018 cm-2) n-type 6H silicon carbide sample in the measuring temperature range of 15 K to 294 K. Isochronal annealing studies were also performed up to the temperature of 1373 K by carrying out the room temperature positron lifetime measurement. Negatively charged carbon vacancies and VCVSi divacancy were identified as the major vacancy type defects induced by the electron irradiation process. The concentration of the VCVSi divacancy was found to decrease dramatically after the 1973 K annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Morkoc, H., strite, S., Gao, G.B., Lin, M.E., Sverdlov, B. and Burns, M., J. Appl. Phys. 76, 1362 (1994).Google Scholar
[2] Dailbor, T., Pensel, G., Matsunami, H., Kimoto, T., Choyke, W. J., Schöner, A., and Nordell, N., Phys. Status Solidi A 162, 199 (1997).Google Scholar
[3] Pensl, G. and Choyke, W.J., Physica B 185, 264 (1993).Google Scholar
[4] Zhang, H., Pensl, G., Dömen, A., and Leibenzeder, S., The Electrochemical Society, Extended Astrat 89–2, 699 (1989).Google Scholar
[5] Aboelfotoh, M.O. and Doyle, J.P., Phys. Rev. B 59, 10823 (1999).Google Scholar
[6] Hemmingsson, C., Son, N. T., Kordina, O., Janzèn, E., and Lindström, J. L., J. Appl. Phys. 84, 704 (1998).Google Scholar
[7] Gong, M., Fung, S., and Beling, C. D., J. Appl. Phys. 85, 7604 (1999).Google Scholar
[8] Son, N.T., Hai, P.N. and Janzén, E., Phys. Rev. B 63, 201201 (2001).Google Scholar
[9] Linger, Th., Greulich-Weber, S. and Spaeth, J.M., Phys. Rev. B 64, 245212 (2001).Google Scholar
[10] Lebedev, A.A., Veinger, A.I., Davydov, D.V., Kozlovski, V.V., Savkina, N.S. and Strelchuk, A.M., J. Appl. Phys. 88, 6265 (2000).Google Scholar
[11] Sörman, E., Son, N.T., Chen, W.M., Kordina, O., Hallina, C. and Janzén, E., Phys. Rev. B 61, 2613 (2000).Google Scholar
[12] Chen, X.D., Fung, S., Ling, C.C., Beling, C.D. and Gong, M., J. Appl. Phys. 94, 3004 (2003).Google Scholar
[13] Itoh, H., Kawasuso, A., Ohshima, T., Yoshikawa, M., Nashiyama, I., Tanigawa, S., Misawa, S., Okumura, H. and Yoshida, S., Phys. Status Solidi A 162, 173 (1997).Google Scholar
[14] Kawasuso, A., Redmann, F., Krause-Rehberg, R., Frank, T., Weidner, M., Pensl, G., Sperr, P. and Itoh, H., J. Appl. Phys. 90, 3377 (2001).Google Scholar
[15] Arpiainen, S., Saarinen, K., Haujärvi, P., Henry, L., Barthe, M.-F., and Corbel, C., Phys. Rev. B 66, 075206 (2002).Google Scholar
[16] Henry, L., Barthe, M.-F., Corbel, C., Desgardin, P. and Blondiaux, G., Phys. Rev. B 67, 115210 (2003).Google Scholar
[17] Ling, C.C., Beling, C. D., and Fung, S., Phys. Rev. B. 62, 8016 (2000).Google Scholar
[18] Ling, C. C., Deng, A. H., Fung, S. and Beling, C. D., Appl. Phys. A 70, 33 (2000).Google Scholar
[19] Brauer, G., Anwand, W., Nicht, E.-M., Kuriplach, J., Šob, M., Wagner, N., Coleman, P.G., Puska, M.J. and Korhonen, T., Phys. Rev. B 54, 2512 (1996).Google Scholar
[20] Brauer, G., Anwand, W., Coleman, P. G., Knights, A. P., Plazaola, F., Pacaud, Y., Skurupa, W., Störmer, J. and Willutzki, P., Phys. Rev. B 54, 3084 (1996).Google Scholar
[21] Dannefaer, S., Craigen, D. and Kerr, D., Phys. Rev. B 51, 1928 (1995).Google Scholar
[22] Krause-Rehberg, R. and Leipner, H. S., Positron Annihilation in Semiconductors, Defect Studies, Vol. 127 of Springer Series in Solid-State Sciences (Spinger-Verlag, Berlin, 1999).Google Scholar
[23] Kirkegaard, P., Pedersen, N.J., and Eldrup, M., in PATFIT-88, A Data-Processing Spectra on Mainframe and Personal Computers, (RisØ National Laboratory, DK-4000 Roskilde, Denmark, 1989).Google Scholar
[24] Mascher, P., Dannefaer, S., Kerr, D., Phys. Rev. B 40, 11764 (1989).Google Scholar
[25] Novikov, N. V., Ositinskaya, T. D. and Mikhalenkov, V. S., Diam. Relat. Mater. 7, 756 (1998).Google Scholar