Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T02:23:58.240Z Has data issue: false hasContentIssue false

UV-Visible-IR Electroluminescence from Si and Ge Nanocrystals in a Wider Bandgap Matrix

Published online by Cambridge University Press:  28 February 2011

G.S. Tompa
Affiliation:
Structured Materials Industries, Inc., Piscataway, NJ 08854
D.C. Morton
Affiliation:
Army Research Laboratory, Ft. Monmouth, NJ 07703
B.S. Sywe
Affiliation:
Rutgers University, Piscataway, NJ 08855
Y. Lu
Affiliation:
Rutgers University, Piscataway, NJ 08855
E.W. Forsythe
Affiliation:
Stevens Institute of Technology, Hoboken, NJ 07030
J.A. Ott
Affiliation:
Stevens Institute of Technology, Hoboken, NJ 07030
D. Smith
Affiliation:
Stevens Institute of Technology, Hoboken, NJ 07030
J. Khurgin
Affiliation:
John Hopkins University, Baltimore, MD 21218
B.A. Khan
Affiliation:
Briarcliff Manor, NY 10511.
N.A. Philips
Affiliation:
Briarcliff Manor, NY 10511.
Get access

Abstract

The demonstration of photoluminescence (PL) and electroluminescence (EL) in nanostructures of Si or Ge, such as those found in porous silicon, has significantly improved the prospects of all Si based photonic devices. While the physical mechanisms at work are still a subject of much study, it is clear that the luminescence is associated with the formation of nanometer or “quantum” sized particles. Further, it is clear that prototype NanoCrystal Displays (NCDs) and communication devices are being fabricated in these material systems. We report here on the electroluminescent properties of nanometer sized particles in an SiO2 host matrix, which were fabricated by LPCVD techniques. The films have demonstrated reproducible emission from well below 400 nm to well above 800 nm. We believe that dispersion effects of the nanocrystals can account for "white" light emission. The films have been characterized using PL, Raman, XRD, TEM, and SIMS. The nanocrystals are primarily in the 2-7 nm range although larger crystal clusters are also observed. The development of stable and efficient Si or Ge nanocrystalline EL based devices could find applications in lamps/LEDs, photonic integrated circuits, and displays.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lang, W., Steiner, P., and Kozlowski, F., J. Lumines. 57, 341 (1993).Google Scholar
2 DiMaria, D.J., Kirtley, J.R., Pakulis, E.J., Dong, D.W., Kuan, T.S., Pesavento, F.L., Theis, T. N., Cutro, J.A., and Broson, S.D., J. Appl. Phys. 56, 401 (1984).Google Scholar
3 Shcheglov, K.V., Yang, C.M., Vahala, K.J., and Atwater, H.A., presented at the 1994 MRS Fall Meeting, Symp. F, Boston, MA, (1994).Google Scholar
4 Toriumi, A., Yoshimi, M., Iwase, M., Akiyama, Y., Taniguchi, K., IEEE Trans. on Electronic Dev., ED-34, 7, 1501 (1987).Google Scholar
5 Fauchet, P.M., Tsybeskov, L., Vandyshev, Ju. V., Dubois, A., and Peng, C., SPIE, 2141, 155 (1994). and S.M. Prokes, W.E. Carlos, V.M. Bermudez, APL, 61, 1446 (1992)Google Scholar
6 Canham, L.T., APL, 57, 1046 (1990)Google Scholar
7 Wilson, W.L., Szajowski, P.F., Brus, L.E., Science, 262, 1242 (1993)Google Scholar
8 Schuppler, S., Friedman, S.L., Marcus, M.A., Adler, D.L., Y-H, Xie, Ross, FM., Harris, T.D., Brown, W.L., Chabal, Y.J., Brus, L.E., Citrin, P.H., Phys. Rev. Lett., 72, 2648 (1994)Google Scholar
9 Takagahara, T. and Takeda, K., Phys. Rev. B, 46, 15578 (1992).Google Scholar
10 Zhao, X., Schoenfeld, O., Kusano, J., Aoyagi, Y., Sugano, T., Jpn. J. Appl. Phys., 33, P2, L899 (1994).Google Scholar
11 Khurgin, J.B., Forsythe, E.W., Kim, S.I., Sywe, B.S., Khan, B.A., Tompa, G.S., presented at the 1994 MRS Fall Meeting, Symp. F, Boston, MA, (1994)Google Scholar
12 Hybertsen, M.S., Phys. Rev. Lett., 72, 1514 (1994).Google Scholar
13 Kanemitsu, Y., J. Phys. Soc. Jpn. 63, Suppl. B., 107 (1994).Google Scholar
14 Konthicwing, A.J., Appl. Phys. Lett. 65 (11), 1436 (1994).Google Scholar
15 Kim, S.I., Hart, T., Khan, B.K., Tompa, G.S., Lu, Y., Sun, G., and Khurgin, J., Mat. Res. Soc. Symp. Proc. 326, 591 (1994).Google Scholar
16 Atwater, H.A., Shcheglov, K.V., Wong, S.S., Vahala, K.J., Flagan, R.C., Brongersma, M.L., and Polman, A., Mat. Res. Soc. Symp. Proc. 316, 409 (1994).Google Scholar
17 Taylor, A.P., Stokes, K., Wu, Z.C., Persans, P.D., Schowalter, L.J., and LeGoues, F.K., Mat. Res. Soc. Symp. Proc. 283, 71 (1993).Google Scholar
18 Masumoto, Y., Mat. Res. Soc. Symp. Proc. 283, 15 (1993).Google Scholar
19 Ruckschloss, M., Ambacher, O., and Veprek, S., J. Lumines. 57, 1 (1994).Google Scholar
20 Tompa, G.S., J. Cryst. Growth, proceedings of ICMOCVD-VII, Japan, in press.Google Scholar
21 Forsythe, E.W., Whittaker, E.W., Pollak, F.H., Sywe, B.S., Tompa, G.S., Khan, B.K., Khurgin, J., and Lee, H.W.H., Proceedings of Symp. F, MRS Fall Meeting, Boston, MA, (1994).Google Scholar
22 Sywe, B.S., Gorla, C., Lu, Y., Mayo, W., Tompa, G., Forsythe, E., Ott, J., Smith, D., Khan, B., Khurgin, J., Kim, M., Lee, H., Lareau, R., presented at the 1994 MRS Fall Meeting, Symp. F, Boston, MA, (1994)Google Scholar
23 Matsumoto, T., Futagi, T., and Mimura, H., Phys Rev B, 47, 13876 (1993).Google Scholar