Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T14:39:10.752Z Has data issue: false hasContentIssue false

UV Laser Ablation of Ferroelectrics

Published online by Cambridge University Press:  26 February 2011

R. F. Haglund Jr.
Affiliation:
Haglund, Arps and Tang Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
J. H. Arps
Affiliation:
Haglund, Arps and Tang Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
K. Tang
Affiliation:
Haglund, Arps and Tang Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
A. Niehof
Affiliation:
Niehof and Heiland FB Physik, Barbarastraße 7, Universität Osnabrück, D-4500 Osnabrück, Germany
W. Heiland
Affiliation:
Niehof and Heiland FB Physik, Barbarastraße 7, Universität Osnabrück, D-4500 Osnabrück, Germany
Get access

Abstract

We have investigated laser ablation of excited atoms from the ferroelectrics LiNbO3 and KNbO3 at 308 nm. Comparisons of the yields for O*, K* and Nb* from pure and undoped KNbO3 show the effects of changing intensity, surface condition and irradiation time on the yield of excited atoms. Below about 20 GW cm−2, the mechanisms for production of excited atoms differ among the various species; above that intensity, the production of a dense electron-hole plasma appears to impart a collective character to the ablation mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sapriel, J., Acousto-Optics (Chicester: John Wiley, 1979) trans. S. Frances and B. Kelly.Google Scholar
2. Silberberg, Y., Optics News 15 (February 1989) 712.Google Scholar
3. Koslovsly, W. J., Lenth, W., Latta, E. E., Moser, A. and Bona, G. L., Appl. Phys. Lett. 56 (1990) 22912.Google Scholar
4. Eyett, M. and Bäuerle, D., Appl. Phys Lett. 51 (1987) 2054.Google Scholar
5. Ashby, C. I. H., Arnold, G. W. and Brannon, P. J., J. Appl. Phys. 65 (1989) 9397.Google Scholar
6. Krauss, T., Speth, A., Opryski, M. M., Fan, B. and Grebe, K., Appl. Phys. Lett. 53 (1988) 947949.Google Scholar
7 Niehof, A., Becker, K., Haglund, R. F. Jr., Arps, J., Heiland, W. and Wang, L.-J., to be submitted to Nucl. Instrum. Methods in Phys. Res.; K. Tang, M. Affatigato and R. F. Haglund, Jr., to be submitted to Appl. Phys. Lett.Google Scholar
8. Hattori, K., Nakai, Y., Okano, A., Itoh, N. and Haglund, R. F. Jr., submitted to Phys. Rev. Lett.Google Scholar
9. Lines, M. E. and Glass, A. M., Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press, 1975).Google Scholar
10. Weiss, R. S. and Gaylord, T. K., Appl. Phys. A 37 (1985) 191203.Google Scholar
11. Lines, M. E., Phys. Rev. B 41 (1990) 33723382.Google Scholar
12. Bunton, P. H., Haglund, R. F. Jr., Liu, D. and Tolk, N. H., submitted to Phys. Rev. B.Google Scholar