Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T02:17:53.867Z Has data issue: false hasContentIssue false

Using Cell-Free Expression to Create Light-Activated Proteins In Situ in Droplet Interface Bilayer Networks

Published online by Cambridge University Press:  06 February 2015

Graham J. Taylor
Affiliation:
Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN 37920, U.S.A.
Stephen A. Sarles*
Affiliation:
Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN 37920, U.S.A.
*
Get access

Abstract

Droplet interface bilayers (DIBs) are physical lipid bilayers that mimic real membranes in living cells, and they are formed quickly using droplets of water and lipids in oil (Fig. 1A). DIBs allow biomolecular sensing and direct detection of transmembrane proteins or peptides and small molecules such as drugs, anesthetics, or even ions. Cell-free expression systems allow in vitro protein synthesis using actual natural machinery extracted from organisms (Fig. 1B). Previous attempts to combine DIBs with cell-free extracts (CFE) encountered bilayer destabilization due to components in the expression system. This study evaluates incorporation of Promega’s T7 S30 High Yield (HY) Expression system with DIBs to pave the way for future in situ expression of light-activated bacteriorhodopsin (BR) and other complex transmembrane proteins in DIBs. A secondary output includes establishing a method for real-time monitoring and modeling of CF expression reactions using minimal volume. The ability to quantify CF output in such small volumes reduces cost per reaction from $20 to around $0.40, and synthesized protein levels reach tens to hundreds of micrograms per milliliter in less than 1 hour at 37°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sarles, S. A. Physical encapsulation of interface bilayers. Virginia Polytechnic Institute and State University2010.Google Scholar
Bayley, H.; Cronin, B.; Heron, A.; Holden, M. A.; Hwang, W. L.; Syeda, R.; Thompson, J.; Wallace, M. Droplet interface bilayers. Molecular BioSystems 2008, 4 (12), 11911208.CrossRefGoogle ScholarPubMed
Funakoshi, K.; Suzuki, H.; Takeuchi, S. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Analytical Chemistry 2006, 78 (24), 81698174.CrossRefGoogle Scholar
Heron, A. J.; Thompson, J. R.; Cronin, B.; Bayley, H.; Wallace, M. I. Simultaneous Measurement of Ionic Current and Fluorescence from Single Protein Pores. Journal of the American Chemical Society 2009, 131 (5), 16521653.CrossRefGoogle ScholarPubMed
Syeda, R.; Holden, M. A.; Hwang, W. L.; Bayley, H. Screening Blockers Against a Potassium Channel with a Droplet Interface Bilayer Array. Journal of the American Chemical Society 2008, 130 (46), 1554315548.CrossRefGoogle ScholarPubMed
Friddin, M. S.; Morgan, H.; de Planque, M. R. R. Cell-free protein expression systems in microdroplets: Stabilization of interdroplet bilayers. Biomicrofluidics 2013, 7 (1), -.CrossRefGoogle ScholarPubMed
Menestrina, G.; Mackman, N.; Holland, I. B.; Bhakdi, S. Escherichia coli haemolysin forms voltage-dependent ion channels in lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 1987, 905 (1), 109117.CrossRefGoogle ScholarPubMed
Taylor, G. J.; Sarles, S. A. Heating-Enabled Formation of Droplet Interface Bilayers Using Escherichia coli Total Lipid Extract. Langmuir 2014, 31 (1), 325337.CrossRefGoogle ScholarPubMed
Dixit, S. S.; Pincus, A.; Guo, B.; Faris, G. W. Droplet Shape Analysis and Permeability Studies in Droplet Lipid Bilayers. Langmuir 2012, 28 (19), 74427451.CrossRefGoogle ScholarPubMed
Sarles, S. A.; Leo, D. J. Regulated Attachment Method for Reconstituting Lipid Bilayers of Prescribed Size within Flexible Substrates. Analytical Chemistry 2010, 82 (3), 959966.CrossRefGoogle ScholarPubMed
Lentini, R.; Forlin, M.; Martini, L.; Del Bianco, C.; Spencer, A. C.; Torino, D.; Mansy, S. S. Fluorescent Proteins and in Vitro Genetic Organization for Cell-Free Synthetic Biology. ACS Synthetic Biology 2013, 2 (9), 482489.CrossRefGoogle ScholarPubMed