Skip to main content Accessibility help

Uranium (and Cerium) Compounds At High Pressures and Magnetic Fields

  • Andrew L. Cornelius (a1), Ravhi S. Kumar (a1) and Brian E. Light (a1)


Correlated-electron systems are so named due to strong interactions between electrons unlike traditional metals (e.g. copper) that have “free electrons” that interact very weakly. Knowledge of the Fermi surface, density of electron states and band structure are the starting points for a first-principles understanding of the electronic and electronically related macroscopic properties, e.g. equation of state. The use of high pressure and high magnetic fields to alter the electron-electron (hybridization) and electron-lattice interactions give us powerful tools to understand complicated rare earth and actinide correlated-electron systems and allows precise testing of experiment to theory. Correlated-electron systems yield a wide variety of ground states that are a direct result of the hybridization strength including: short and long range magnetic order, spin fluctuating, enhanced Pauli paramagnetism, heavy fermion behavior and superconductivity. We will review some results on U compounds in high magnetic fields and high pressures. By comparing the results to Ce compounds that have significantly more localized f electrons, the effect of direct 5f electron wavefunction overlap in U compounds can be discerned. Consequences on the search for U based heavy fermion superconductors will be discussed.



Hide All
1. Doniach, S., in Valence Instability and Related Narrow Band Phenomena, edited by Parks, R. D. (Plenum, New York, 1977).
2. Doniach, S., Physica B 231–234, 231 (1977).
3. Monthoux, P. and Lonzarich, G. G., Phys. Rev. B 63, 054529 (2001).
4. Cornelius, A. L., Gangopadhyay, A. K., Schilling, J. S., and Assmus, W., Phys. Rev. B 55, 14109 (1997).
5. Cornelius, A. L., Schilling, J. S., Mandrus, D., and Thompson, J. D., Phys. Rev. B 52, R15699 (1995).
6. Thompson, J. D. and Lawrence, J. M., in Handbook on the Physcis and Chemistry of Rare Earths (North-Holland, Amsterdam, 1994), Vol. 19, Chap. 133, pp. 383477.
7. Endstra, T., Nieuwenhuys, G. J. and Mydosh, J. A., Phys. Rev. B 48, 9595 (1993).
8. Sanchez, J. P. and Abd-Elmeguid, M. M., Hyperfine Inter. 128, 137 (2000).
9. Hegger, H. et al., Phys. Rev. Lett. 84, 4986 (2000).
10. Moshopoulou, E. G., Fisk, Z., Sarrao, J. L., and Thompson, J. D., J. Sol. State Chem 158, 25 (2001).
11. Lander, G. H., Mueller, M. H., Sparlin, M. M, and Vogt, O., Phys. Rev. B 14, 5035 (1976).
12. Malik, S. K. and Adroja, D. T., Phys. Rev. B 43, 6295 (1991).
13. Trovarelli, O., Sereni, J. G., Schmerber, G., and Kappler, J. P., Phys. Rev. B 49, 15179 (1994).
14. Cornelius, A. L., Ph.D. thesis, Washington University, St. Louis, 1996.
15. Klotz, S., Schilling, J. S., and Müller, P., in Frontiers of High-Pressure Research, edited by Hochheimer, H. D. and Etters, E. D. (Plenum, New York, 1991).
16. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Haüsermann, D., High Press. Res. 14, 235 (1996).
17. Rodriguez-Carvajal, J., Physica B 192, 55 (1993).
18. Wasserman, A., Springford, M., and Hewson, A. C., J. Phys. Condens. Matter 1, 2669 (1989).
19. Springford, M., Physica B 171, 151 (1991).
20. Lonzarich, G. G., J. Magn. Magn. Mater. 76–77, 1 (1988).
21. Wasserman, A. and Springford, M., Adv. Phys. 45, 471 (1996).
22. Taillefer, L., Flouquet, J., and Lonzarich, G. G., Physica B 169, 257 (1991).
23. Lawrence, J. M. and Shapiro, S. M., Phys. Rev. B 22, 4379 (1980).
24. Bao, W. et al., Phys. Rev. B 62, R14621 (2000).
25. Cornelius, A. L., Arko, A. J., Sarrao, J. L., Hundley, M. F., and Fisk, Z., Phys. Rev. B 62, 14181 (2000).
26. Cornelius, A. L., Pagliuso, P. G., Hundley, M. F., and Sarrao, J. L. Phys. Rev. B 64, 144411 (2001).
27. Pagliuso, P. G. et al., Phys. Rev. B 66, 054433 (2002).
28. Zapf, V. S. et al., Phys. Rev. B 67, 064405 (2003).
29. Stewart, G. R., Rev. Mod. Phys. 73, 797 (2001).
30. Bao, Wei et al., Phys. Rev. B 65, R100505 (2002).
31. McCoy, B. M. and Wu, T. T., Two-Dimensional Ising Model (Harvard University Press, Cambridge, 1973).
32. Takeuchi, T. et al., J. Phys. Soc. Jpn. 70, 877 (2001)
33. Pagliuso, P. G. et al., Physica B 320, 370 (2002)
34. Christianson, A. D. et al., Phys. Rev. B 66, 139102 (2002).
35. Fisher, R. A. et al., Phys. Rev. B 65, 224509 (2002).
36. Rajan, V. T., Phys. Rev. Lett. 51, 308 (1983).
37. Mito, T. et al., Phys. Rev. Lett 63, 077004 (2003).
38. Nakatsuji, S. et al., Phys. Rev. Lett. 89, 106402 (2002).
39. Nakatsuji, S., Pines, D., and Fisk, Z., cond-mat/0304587.
40. Curro, N. J. et al., Phys. Rev. Lett. 90, 227202 (2003).
41. Vedel, I., Redon, A. M., Mignot, J. M., and Leger, J. M., J. Phys. F: Metal Phys. 17, 849 (1987)
42. Cornelius, A. L., Schilling, J. S., Vogt, O., Mattenberger, K., and Benedict, U., J. Magn. Magn. Mater. 161, 169 (1996).
43. Cooper, B. R., Sheng, Q. G., Benedict, U., and Link, P., J. Alloys Comp. 213–214, 120 (1994).
44. Link, P. et al., J. Alloys Comp. 213–214, 398 (1994).
45. Saxena, S. S. et al., Nature 604, 587 (2000).
46. Nakashima, M. et al., J. Phys.: Condens. Matter 15, S2007 (2003).
47. Nakashima, M. et al., J. Phys.: Condens. Matter 13, L569 (2001).
48. Sarrao, J. L. et al., Nature 420, 297 (2002).
49. Wastin, F., Boulet, P., Rebizant, J., Colineau, E., and Lander, G. H., J. Phys.: Condens. Matter 15, S2279 (2003).
50. Cox, D. E. et al., Phys. Rev. B 33, 3614 (1986).

Uranium (and Cerium) Compounds At High Pressures and Magnetic Fields

  • Andrew L. Cornelius (a1), Ravhi S. Kumar (a1) and Brian E. Light (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed