Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T15:45:16.493Z Has data issue: false hasContentIssue false

Uniform, High Performance Poly-Si TFTs Fabricated by Laser- Crystallization of PECVD-Grown a-SI:H

Published online by Cambridge University Press:  14 March 2011

D. Toet
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Ave., L-271, Livermore CA 94550 Lawrence Livermore National Laboratory, 7000 East Ave., L-271, Livermore CA 94550, e-mail: toet1@llnl.gov
T.W. Sigmon
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Ave., L-271, Livermore CA 94550
T. Takehara
Affiliation:
AKT, 3101 Scott Blvd., M/S 9155, Santa Clara, CA 95054
C.C. Tsai
Affiliation:
AKT, 3101 Scott Blvd., M/S 9155, Santa Clara, CA 95054 now at: Quanta Display, 188 Wen Hwa 2nd Rd., Kuei Shan Hsiang, Tao Yuan Shien, Taiwan
W.R. Harshbarger
Affiliation:
AKT, 3101 Scott Blvd., M/S 9155, Santa Clara, CA 95054
Get access

Abstract

Polycrystalline silicon thin film transistors (TFTs) were fabricated using laser crystallization of thin amorphous Si films grown by plasma-enhanced chemical vapor deposition. The films were exposed to a scanned XeCl excimer laser beam at 350 mJ/cm2. At this fluence the Si film com- pletely melted and crystallized in the form of uniformly distributed grains with an average size of 39 nm. One of the films was then subjected to a low fluence laser scan (250 mJ/cm2), which re- sulted in the melting of the top part of the film and lead to an increase in grain size. The TFTs fabricated without the partial melt method had good electrical properties and uniformities. The partial melt method lead to substantial improvements in most device characteristics, while the uniformity remained good.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Serikawa, T., Shirai, S., Okamoto, A. and Suyama, S., IEEE Trans. Electron Devices 36, 1929 (1989).Google Scholar
[2] Sameshima, T., Usui, S., and Sekiya, M., IEEE Electron Device Lett. 7, 176 (1986).Google Scholar
[3] Brotherton, S. D., McCulloch, D. J., Gowers, J. P., Ayres, J. R. and Trainor, M. J., J Appl. Phys. 82, 4086 (1997).Google Scholar
[4] Im, J. S., Kim, H. J., and Thompson, M. O., Appl. Phys. Lett. 63, 1969 (1993).Google Scholar
[5] Voutsas, T. and Hatalis, M., J. Appl. Phys. 76, 777 (1994).Google Scholar
[6] Toet, D., Smith, P.M., Sigmon, T. W., Takehara, T., Tsai, C. C., Harshbarger, W. R., and Thompson, M. O., J. Appl. Phys. 85, 7914 (1999).Google Scholar
[7] Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacob-son, D. C., Cullis, A. G., and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1994).Google Scholar
[8] Stiffler, S. R. and Thompson, M. O., Phys. Rev. Lett. 60, 2519 (1988).Google Scholar
[9] Fulks, R. T., Boyce, J. B., Ho, J., Davis, G. A., and Aebi, V., Mat. Res. Symp. Proc. 557, 623 (1999).Google Scholar