Skip to main content Accessibility help

Ultrathin Silicon Dioxide Formation By Ozone On Ultraflat Si Surface

  • A. Kurokawa (a1), T. Maeda (a1), K. Sakamoto (a1), H. Itoh (a1), K. Nakamura (a1), K. Koike (a2), D.W. Moon (a3), Y.H. Ha (a4), S. Ichimura (a1) and A. Ando (a1)...


We prepared an atomically flat silicon substrate which had a step-terrace structure and observed the topography of the ozone-oxidized surface to clarify whether homogeneous oxidation occurs with ozone. The oxide was formed with high-concentration ozone gas with a thickness of 2.5nm at a temperature of 350°C. The oxide surface still maintained the same step-terrace structure as observed before oxidation, which revealed that ozone-oxidation occurs layer-by-layer and produces an atomically flat oxide. XPS and MEIS analyses show that the stoichiometry of ozone oxide grown at 350°C is the same as that of an oxide grown thermally at 750°C.



Hide All
1 Kurokawa, A., Ichimura, S., Jpn. J. Appl. Phys. 34, L1606 (1995).10.1143/JJAP.34.L1606
2 Kurokawa, A., Ichimura, S. and Moon, D. W., Mat. Res. Soc. Symp. Proc. 477, 359 (1997).10.1557/PROC-477-359
3 Nakamura, K., Kurokawa, A. and Ichimura, S., J. Vac. Sci. Technol. 16, 2441 (1997).10.1116/1.580905
4 Kurokawa, A., Nakamura, K. and Ichimura, S., Mat. Res. Soc. Symp. Proc. 513, 37 (1998).10.1557/PROC-513-37
5 Yamagishi, H., Koike, N., Imai, K., Yamabe, K. and Hattori, T., Jpn. J. Appl. Phys. 27, LI 398 (1988).10.1143/JJAP.27.997
6 Miyazaki, S., Nishimura, N., Fukuda, M., Ley, L. and Risten, J., Appl. Surf. Sci, 113/114, 585 (1997).10.1016/S0169-4332(96)00805-7
7 Nakamura, K., Ichimura, S. and Kurokawa, A. (submitted to JVST).
8 Miki, K., Sakamoto, K. and Sakamoto, T., Surf. Sci., 406, 312 (1998).10.1016/S0039-6028(98)00131-9
9 Ichimura, S., Hosokawa, S., Nonaka, H. and Arai, K., J. Vac. Sci. Technol. A9, 2369 (1991).10.1116/1.577278
10 Koike, K., Ichimura, S., Kurokawa, A.: 1999 Spring MRS symposium proceedings (to be submitted).
11 Lee, J. C., Chung, C. S., Kang, H. J., Kim, Y. P., Kim, H. K. and Moon, D. W., J. Vac. Sci. Technol. A 13 (1995) 1325.10.1116/1.579559
13 Ohmi, T., Miyashita, M., Itano, M., Imaoka, T. and Kawanabe, I., IEEE Trans. Electron Devices, 39, 537 (1992).10.1109/16.123475
14 Endo, K., Arima, K., Kataoka, T., Oshikane, Y., Inoue, H. and Mori, Y., Appl. Phys. Let. 73, 1853(1998).10.1063/1.122304
15 Hattori, T., Fujimura, M., Yagi, T., Ohashi, M., Appl. Surf. Sci. 123/124, 87 (1998)10.1016/S0169-4332(97)00432-7
16 Grunthaner, F. J., Grunthaner, P. J., Vasquez, R. P., Lewis, B. F. and Maserjian, J., J. Vac. Sci. Technol. A16, 1443 (1979).10.1116/1.570218
17 Hollinger, G., Himpsel, F. J., Phys. Rev. B28, 3651(1983).10.1103/PhysRevB.28.3651
18 Hattori, T. and Suzuki, T., Appl. Phys. Lett. 43, 470 (1983).10.1063/1.94392
19 Himpsel, F J., McFreely, F. R., Ibrahim, A. T., Yarmoff, J. A. and Hollinger, G., Phys. Rev. B38, 6084 (1988).10.1103/PhysRevB.38.6084


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed