Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T07:11:12.727Z Has data issue: false hasContentIssue false

Ultrasmall Lasers Based on Photonic Crystal Line Defects

Published online by Cambridge University Press:  01 February 2011

Toshihiko Baba*
Affiliation:
Yokohama National University, Department of Electrical and Computer Engineering 79–5 Tokiwadai, Hodogayaku, Yokohama 240–8501, Japan
Get access

Abstract

In this paper, we discuss unique light localization in a single line defect, which is effective for constructing photonic crystal light lasers. The localization is based on additional defect doping that breaks the symmetry of the line defect. Even though such a defect is opened to the line defect, the optical field is well confined around the defect at cutoff frequencies of the line defect. This concept expands the design flexibility of microcavities; for example, the composite of point and line defects and waveguide components such as bends and branches can be microcavities. It also allows effective mode controls such as the singlemode operation in relatively large cavities. The lasing operation of these cavities in a GaInAsP photonic crystal slab was experimentally observed by photopumping at room temperature. This paper reports lasing characteristics and the dependence on various structural details.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Painter, O. J., Husain, A., Scherer, A., O'Brien, J. D., Kim, I., and Dapkus, P. D., J. Lightwave Technol. 17, 2082 (1999).Google Scholar
2. Park, H. G., Hwang, J. K., Huh, J., Ryu, H. Y. and Lee, Y. H., Appl. Phys. Lett. 79, 3032 (2001).Google Scholar
3. Monat, C., Seassal, C., Letartre, X., Viktorovitch, P., Regreny, P., Gendry, M., Rojo-Romeo, P., Hollinger, G., Jalaguier, E., Pocas, S. and Aspar, B., Electron. Lett. 37, 764 (2001).Google Scholar
4. Lee, P. T., Cao, J. R., Choi, S. J., Wei, Z. J., O'Brien, J. D. and Dapkus, P. D., IEEE Photon. Technol. Lett. 14, 435 (2002).Google Scholar
5. Smith, C. J. M., Krauss, T. F., Benisty, H., Rattier, M., Weisbuch, C., Oesterle, U. and Houdré, R., J. Opt. Soc. Am. B 17, 2043 (2000).Google Scholar
6. Imada, M., Noda, S., Chutinan, A., Mochizuki, M. and Tanaka, T., J. Lightwave Technol. 20, 873 (2002).Google Scholar
7. Lin, S. Y., Chow, E., Johnson, S. G. and Joannopoulos, J. D., Opt. Lett. 26, 1903 (2001).Google Scholar
8. Baba, T., Fukaya, N. and Yonekura, J., Electron. Lett. 35, 654 (1999).Google Scholar
9. Tokushima, M., Kosaka, H., Tomita, A. and Yamada, H., Appl. Phys. Lett. 76, 952 (2000).Google Scholar
10. Lončar, M., Nedeljković, D., Doll, T., Vučković, J., Scherer, A. and Pearsall, T. P., Appl. Phys. Lett. 77, 1937 (2000).Google Scholar
11. Lin, S. Y., Chow, E., Johnson, S. G. and Joannopoulos, J. D., Opt. Lett. 25, 1297 (2000).Google Scholar
12. Smith, C. J., Benisty, H., Olivier, S., Rattier, M., Weisbuch, C., Krauss, T. F., De La Rue, R. M., Houdré, R. and Oesterle, U., Appl. Phys. Lett. 77, 2813 (2000).Google Scholar
13. Notomi, M., Shinya, A., Yamada, K., Takahashi, J., Takahashi, C. and Yokohama, I., Electron. Lett. 37, 293 (2001).Google Scholar
14. Sugimoto, Y., Ikeda, N., Carlsson, N., et al., J. Appl. Phys. 91, 3477 (2002).Google Scholar
15. Yonekura, J., Ikeda, M. and Baba, T., J. Lightwave Technol. 17, 1500 (1999).Google Scholar
16. Inoshita, K. and Baba, T., IEEE J. Sel. Top. Quantum Electron. 9, (2003, to be published).Google Scholar
17. Inoshita, K. and Baba, T., Electron. Lett. 39, 844 (2003).Google Scholar
18. Inoshita, K. and Baba, T., Jpn. J. Appl. Phys. 42, 6887 (2003).Google Scholar
19. Kawakami, S., Sato, T., Miura, K., et al., IEEE Photon. Technol. Lett. 15, 816 (2003).Google Scholar
20. Song, B. S., Noda, S. and Asano, T., Science 300, 1537 (2003).Google Scholar
21. Loncar, M., Yoshie, T., Scherer, A., Gogna, P. and Qiu, Y., Appl. Phys. Lett. 81, 2680 (2002).Google Scholar