Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T12:46:20.942Z Has data issue: false hasContentIssue false

Ultra Low-dielectric-constant Materials for 65nm Technology Node and Beyond

Published online by Cambridge University Press:  17 March 2011

Get access

Abstract

Pore characteristics including pore size distribution, porosity, and pore interconnectivity of PECVD SiCOH inter- layer dielectric (ILD) materials with different dielectric constant (κ) values have been studied. Oxygen plasma damage to SiCOH low-κ films increases dramatically as the κ value decreases. Simulations showed that, compared to the ILD film, the overhead dielectric films have a significant impact on the overall effective κ (κeff) of the BEOL interconnects. Reducing the κ values of these overhead films helps to alleviate the pressure on the κ value requirement of the ILD materials while still meeting the κeff target. Ultra low-κ (ULK) PECVD hydrogenated silicon carbide (H:SiC) films with a κ of 3.0 have been studied for the etch-stop applications. Studies of the chemical composition and bonding structure suggest that less Si-C networκs are formed and more micro-porosity are incorporated in the ULK H:SiC film. The leakage current of the ULK H:SiC film is found to be about 5 times lower than the H:S iC and H:SiCN films with higher κ values. The etch rate of ULK H:SiC film using a standard SiCOH ILD etch chemistry has been found to be negligible. Such an extremely high etch selectivity maκes these films very good etch-stop layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.International Technology Roadmap for Semiconductor-Interconnects: 1999, 2001 and 2003.Google Scholar
2.Grill, A., Patel, V., Rodbell, K., Huang, E., Baklanov, M., Mogilnikov, K., Toney, M., and Kim, K., J. Appl. Phys., 94, 3427 (2003)Google Scholar
3.Maex, K., Baklanov, M., Shamiryan, D., Iacopi, F., Brongersma, S., and Yanovitskaya, Z., J. Appl. Phys., 93, 8793 (2003)Google Scholar
4.Lu, H., Cui, H., Bhat, I., Murarka, S., Lanford, W., Hsia, W., and Li, W., J. Vac. Sci. Technol. B, 20, 828 (2002)Google Scholar
5.Aoi, N., Fukuda, T., and Yanazawa, H., Proceedings of IITC, 72, (2002)Google Scholar
6.Kondoh, E., Asano, T., Nakashima, A., and Komatsu, M., J. Vac. Sci. Technol. B 18, 1276 (2000)Google Scholar
7.Besling, W., Satta, A., Schuhmacher, J., Abell, T., Sutcliffe, V., Hoyas, a., Beyer, G., Gravesteijn, D., and Maex, K., Proceedings of IITC, 288 (2002)Google Scholar
8.Gidley, D., Frieze, W., Dull, T., Yee, A., Ryan, E., and Ho, H., Phys. Rev. B 60, R5157 (1999)Google Scholar
9.Baklaonv, M., Mogilnikov, K., Polovinkin, V., and Dultsev, F., J. Vac. Sci. Technol. B 18, 1385 (2000)CrossRefGoogle Scholar
10.Zarkesh-Ha, P., Burke, P., Doniger, K., Loh, W., Sukharev, V., Lu, M., Bendix, P., Catabay, W., Hisa, W., Chang, C-H., Proceedings of VMIC, 17 (2003)Google Scholar
11.Davis, J., De, V., and Meindl, J., IEEE Transaction on Electron Devices, 580 (1998)Google Scholar
12.Davis, J., De, V., and Meindl, J., IEEE Transaction on Electron Devices, 590 (1998)Google Scholar
13.Enz, C., Kerummenacher, F., and Vittoz, E., Analog Integrated Circuits and Signal Processing, (83) 1995Google Scholar
14.Loboda, M., Microelectronic Engineering, 50, 15 (1997)Google Scholar
15.Lee, S. G., Kim, Y., Lee, S. P., Oh, H., Lee, S. J., Kim, M., Kim, I., Kim, J., Shin, H., Hong, J., Lee, H., and Kang, H., Jap. J. Appl. Phys., 40, 2663 (2001)CrossRefGoogle Scholar