Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-08T00:57:11.444Z Has data issue: false hasContentIssue false

A Uhv Tem Study of the in Situ Growth of Ultra-Thin Films of CoSi2 ON Si (100).

Published online by Cambridge University Press:  28 February 2011

D. Loretto
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974.
J. M. Gibson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974.
S. M. Yalisove
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974.
Get access

Abstract

Ultrathin (>5 nm) films of cobalt have been deposited at room temperature onto silicon (100) and annealed to form CoSi2 in an Ultra High Vacuum (UHV) Transmission Electron Microscope (TEM). We show that there is a critical thickness of cobalt, ∼1 nm, below which CoSi2 is formed directly upon annealing to –400°C and above which CoSi2 is formed via in-situ-CoSi2. The thicker CoSi2 layers which originate from the severely mismatched intermediate phase show many epitaxial orientations while the thinner CoSi2 layers, which form directly, show only three. We relate the suppression of the intermediate phase, and consequent good epitaxy, to the dominance of interface energy in ultra thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gibson, J. M. and Batstone, J. L., Surface Science 208, 317 (1989).Google Scholar
[2] Gibson, J. M., Batstone, J. L. and Tung, R. T., Appl. Phys. Letts. 51, 45, (1987).Google Scholar
[3] Akiyama, K., Takayanagi, K. and Tanishiro, Y., Surface Science 205; 177 (1988).Google Scholar
[4] Rosencher, E., Delage, S., Arnaud, F. Avitaya, D., D'Anterroches, C., Belhaddad, K. and Pfister, J. C., Physica 134 B, 106 (1985).Google Scholar
[5] Tung, R. T., Levi, A. F. J. and Gibson, J. M., Appl. Phys. Lett. 48, 635 (1986).CrossRefGoogle Scholar
[6] Yalisove, S. M., Tung, R. T., Loretto, D. and Tung, R. T., to be published in J. Vac. Sci. Tech.Google Scholar
[7] Bulle-Lieuwma, C. W. T., Ommen, A. H. van and Honstra, J., Mater. Res. Soc. Symp. Proc. 102, 377 (1988).CrossRefGoogle Scholar
[8] McDonald, M. L., Gibson, J. M. and Unterwald, F. C., Rev. Sci. Instruments, scheduled to appear in April 1989.Google Scholar
[9] Gibson, J. M. and Lanzerotti, M. Y., Mat. Res. Symp. Proc. 139. to be published.Google Scholar
[10] Hamers, R. J., Tromp, R. M. and Demuth, J. E., Phys. Rev. B 34, 5345 (1986).Google Scholar
[11] Kato, K., Ide, T., Miura, S., Tamura, A. and Ichinokawa, T., Surface Science 194, L87 (1988).Google Scholar
[12] Schulz, L. G., Acta Cryst. 4, 487 (1951).CrossRefGoogle Scholar
[13] Jesser, W. A., Mater. Sci. Eng. 4, 279 (1969).Google Scholar
[14] Farrow, R. F. C., Robertson, D. S., Williams, G. M., Cullis, A. G., Jones, G. R., Young, I. M. and Dennis, P. N. J., J. Crystal Growth 54, 507 (1981).Google Scholar