Skip to main content Accessibility help

UHV Preparation and In-Situ Surface Analysis of MNFE/Nife Exchange Structures: Interfacial Impurity Incorporation

  • Susan L. Cohen (a1), John M. Baker (a1), Michael A. Russak (a2), Gerald J. Scilla (a3), Cherngye Hwang (a2) and Stephen M. Rossnagel (a1)...


MnFe/NiFe exchange structures have been prepared in an ultra-high vacuum sputtering/surface analysis system. Controlled introduction of residual gas impurities such as O2 and H2O at the MnFe/NiFe interface is studied by in-situ x-ray photoelectron spectroscopy (XPS) and the exchange structures are magnetically characterized. Due to the extreme reactivity of the NiFe surface towards O2, the exchange coupling is severely degraded by only small exposures of this molecule to the NiFe surface. In contrast, H2O does not oxidize the NiFe surface and therefore can be tolerated in greater quantities in the sputtering chamber without detrimental loss of exchange. This understanding of the basic surface chemistry of the MnFe and NiFe surfaces can lead to improved sputtering practices in actual manufacturing applications.



Hide All
1 Hempstead, R. D., Krongelb, S. and Thompson, D. A., IEEE Trans. Magnet. MAG-14, 521–3 (1978).
2 Tsang, C., Heiman, N. and Lee, K., J. Appl. Phys. 52, 2471–3 (1981).
3 Tsang, C. and Lee, K., J. Appl. Phys. 53, 2605–7 (1982).
4 Yelon, A., Physics of Thin Films 6, 205300 (1971).
5 Ishikawa, Y. and Endoh, Y., J. Phys. Soc. Jap. 23, 205 (1967).
6 Hashimoto, T. and Ishikawa, Y., J. Phys. Soc. Jap. 23, 213 (1967).
7 Ishikawa, Y., Sekine, H. and Yamada, K., J. Phys. Soc. Jap. 37, 874 (1974).
8 Kimball, C., Gerber, W. D. and Arroti, A., J. Appl. Phys. 34, 1046 (1963).
9 Endoh, Y. and Ishikawa, Y., J. Phys. Soc. Jap. 30, 1614 (1971).
10 Sumiyama, K., Ohshima, N. and Nakamura, Y., Phys. Stat. Sol. 98, 229 (1986).
11 Hwang, C., Geiss, R. and Howard, J. K., J. Appl. Phys. 64 (10), 6115 (1988).
12 Russak, M. A., Rossnagel, S. M., Cohen, S. L., McGuire, T. R., Scilla, G. J., Jahnes, C. V., Baker, J.M. and Cuomo, J. J., J. Electrochem. Soc. 136 (6), 1793 (1989).
13 Cohen, S. L., Russak, M. A., Baker, J. M., McGuire, T. R., Scilla, G. J. and Rossnagel, S. M., J. Vac. Sci. Tech. A 6 (3), 918 (1988).
14 Poliak, R. A. and Bajorek, C. H., J. Appl. Phys. 46, 1382–88 (1975).
15 Scofield, J. H., J. Elec. Spectrosc. Relat. Phenom. 8, 129137 (1976).
16 Brundle, C. R., Silverman, E. and Madix, R. J., J. Vac. Sci. Tech. 16, 474 (1979).
17 Norton, P. R., Tapping, R. L. and Goodale, J. W., Surf. Sci. 65, 1336 (1977).
18 Benndorf, C., Nóbl, C., Rusenberg, M. and Thieme, F., Surf. Sci. 111, 87101 (1981).
19 Roberts, M. W. and Wood, P. R., J. Elec. Spectr. Relat. Phenom. 11, 431–37 (1977).
20 Allegranza, O. and Chen, M. -., Paper EB02, 36th Conference on magnetism and magnetic materials (Dec 1–4, 1992).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed