Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-19T03:46:11.823Z Has data issue: false hasContentIssue false

Two Step Growth of InN Films on Sapphire (0001) Substrates Without Nitridation Process by RF-MBE

Published online by Cambridge University Press:  21 March 2011

Tomohiro Yamaguchi
Affiliation:
Dept. of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, JAPAN.
Yoshiki Saito
Affiliation:
Dept. of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, JAPAN.
Kenji Kano
Affiliation:
Dept. of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, JAPAN.
Tomo Muramatsu
Affiliation:
Dept. of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, JAPAN.
Tsutomu Araki
Affiliation:
Dept. of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, JAPAN.
Yasushi Nanishi
Affiliation:
Dept. of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, JAPAN.
Nobuaki Teraguchi
Affiliation:
Advanced Tech. Res. Labs., Sharp Corp., 2613-1 Ichinomoto, Tenri 632-8567, JAPAN.
Akira Suzuki
Affiliation:
Advanced Tech. Res. Labs., Sharp Corp., 2613-1 Ichinomoto, Tenri 632-8567, JAPAN.
Get access

Abstract

InN films were grown on sapphire (0001) substrates by radio-frequency plasma-assisted molecular beam epitaxy. The InN buffer layers deposited at low temperature were either grown on a substrate with nitridation or on a substrate without nitridation. The InN buffer layers on the nitridated substrates were always single crystalline, whereas the buffer layers on non-nitridated substrates were always polycrystalline. However, even without nitridation process, single crystalline InN films could be grown on the polycrystalline InN buffer layers; in this case, the orientation was always [1120] InN//[1120] sapphire epitaxy, which differed from the [1010] InN//[1120] sapphire epitaxy in films grown with nitridation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Uchida, K., Watanabe, A., Yano, F., Kouguchi, M., Tanaka, T. and Minagawa, S., J. Appl. Phys. 79 (1996) 3487.Google Scholar
2. Grandjean, N., Massies, J. and Leroux, M., Appl. Phys. Lett. 69 (1996) 2071.Google Scholar
3. Heinlein, C., Grepstad, J., Berge, T. and Riechert, H., Appl. Phys. Lett. 71 (1997) 341.Google Scholar
4. Balakrishnan, K., Okumura, H. and Yoshida, S., J. Cryst. Growth 189/190 (1998) 244.Google Scholar
5. Yamamoto, A., Tsujino, M., Ohkubo, M. and Hashimoto, A., J. Cryst. Growth 137 (1994) 415.Google Scholar
6. Tsuchiya, T., Yamano, H., Miki, O., Wakahara, A. and Yoshida, A., Jpn. J. Appl. Phys. 38 (1999) 1884.Google Scholar
7. Pan, Y. C., Lee, W. H., Shu, C. K., Lin, H. C., Chiang, C. I., Chang, H., Lin, D. S., Lee, M. C. and Chen, W. K., Jpn. J. Appl. Phys. 38 (1999) 645.Google Scholar
8. Saito, Y., Teraguchi, N., Suzuki, A., Araki, T. and Nanishi, Y., Jpn. J. Appl. Phys. 40 (2001) L91.Google Scholar
9. Lu, H., Schaff, W. J., Hwang, J., Wu, H., Koley, G. and Eastman, L. F., Appl. Phys. Lett. 79 (2001) 1489.Google Scholar
10. Yamaguchi, T., Saito, Y., Kano, K., Araki, T., Teraguchi, N., Suzuki, A. and Nanishi, Y., phys. stat. sol. (b) 228 (2001) 17.Google Scholar
11. Tsuchiya, T., Ohnishi, M., Wakahara, A. and Yoshida, A., J. Cryst. Growth 220 (2000) 191.Google Scholar
12. Fons, P., Iwata, K., Yamada, A., Matsubara, K., Niki, S., Nakahara, K., Tanabe, T. and Takasu, H., Appl. Phys. Lett. 77 (2000) 1801.Google Scholar
13. Yamaguchi, T. et al., To be published in the proceedings of 28th International Symposium on Compound Semiconductors.Google Scholar