Skip to main content Accessibility help

Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology

  • O. Auciello (a1), A.R. Krauss (a2), D.M. Gruen (a2), E.M. Meyer (a3), H.G. Busmann (a4), J. Tucek (a2), A. Sumant (a2), A. Jayatissa (a2), N. Moldovan (a5), D. C. Mancini (a5) and M. N. Gardos (a6)...


Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or SiO2 layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using C60-Ar or CH4-Ar gas mixtures, which result in films that have 3-5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond.



Hide All
1. Lee, A.P., Pisano, A.P., and Lim, M.G., Mat. Res. Soc. Symp. Proc. Vol. 276, 67 (1992).
2. Gabriel, K.J., Behi, F., Mahadevan, R., and Mehregany, M.; Sensors and Actuators A21-A23, 184 (1990).
3. Neuberger, M., Mat. Res.Bull. vol 4, 365 (1969).
4. Spearing, S.M. and Chen, K.S., in “Tribology Issues and Opportunities in MEMS”, edited by Bhushan, B., Kluwer Academic Publisher, The Netherlands (1998) p. 95.
5. Rymuza, Z., Kusznierewicz, Z., Misiak, M., Schmidt-Szalowski, K., Rzanek-Boroch, Z., and Sentek, J., “Tribology Issues and Opportunities in MEMS”, edited by Bhushan, B., Kluwer Academic Publisher, The Netherlands (1998) p 579.
6. Gardos, M.N., Tribol. Trans. 31, 427(1988); Tribol. Trans. 32, 30 (1989).
7. Gardos, M.N., Hong, H.S. and Winer, W.O.; Tribol. Trans. 32, 209 (1990).
8. Gardos, M.N. (private communication, 1999).
9. Gardos, M. N. in Tribology Issues and Opportunities in MEMS, p. 341, Bhushan, B. ed., Kluwer, 1998; Surface and Coatings Technology 113, 183 (1999).
10. Davidson, J.L., Ramesham, R., and Ellis, C., J. Electrochem. Soc. 137, 3206 (1990).
11. Aslam, M., Yang, G.S., and Masood, A., Sensors and Actuators A 45, 131 (1994).10.1016/0924-4247(94)00830-2
12. Wur, D.R., Davidson, J.L., Kang, W.P., and Kinser, D.L., J. Micromech. Syst. 4, 34 (1995).
13. Dorsch, O., Holzner, K., Werner, M., Obermeir, E., Harper, R.E., Johnston, C., Chalker, P.R., and Buckley-Golder, I.M., Diamond Relat. Mater. 2, 1096 (1993).10.1016/0925-9635(93)90279-B
14. Zaho, G., Charlson, E.M., Charlson, E.J., Stacey, T., Meese, J., Popovici, G., and Prelas, M. G., J. Appl. Phys. 73, 1832 (1993).
15. Moller, S., Obermeir, E., and Lin, J., Sensor and Actuators B: Chemical 25, 343 (1995).10.1016/0925-4005(95)85077-5
16. Davidson, J.L. and Wang, W.P., Mater. Res. Soc Symp. Proc. 416, 397 (1996).10.1557/PROC-416-397
17. Yang, G.S. and Aslam, D.M., IEEE Electron. Dev. Lett. 17, 250 (1996).
18. Harris, S. J. and Goodwin, D. G., J. Phys. Chem 97, 23 (1993).
19. Gruen, D. M., Liu, S., Krauss, A. R., Luo, J., and Pan, X., Appl. Phys. Lett. 64, 1502 (1994).
20. Gruen, D. M., Liu, S., Krauss, A. R. and Pan, X., J. Appl. Phys. 75, 1758 (1994). R. Csencsits, D. M. Gruen, A. R. Krauss and C. Zuiker, Mat. Res. Soc. Symp. Proc. 403, 291 (1996).
21. Goyette, A. N., Lawler, J. E., Anderson, L. W., Gruen, D. M., McCauley, T. G., Zhou, D., and Krauss, A. R., J. Phys. D: App. Phys. 31, 19751986 (1998).
22. Redfern, P. C., Horner, D. A., Curtiss, L. A. and Gruen, D. M., J. Phys. Chem. 100, 11654 (1996).10.1021/jp953165g
23. Gruen, D. M., Zuiker, C. D., Krauss, A. R., and Pan, X., J. Vac. Sci. Technol. A 13, 1628 (1995).10.1116/1.579742
24. Nuth, J. A., Nature, 329, 589 (1987).10.1038/329589b0
25. Zuiker, C. D., Krauss, A. R., Gruen, D. M., Carlisle, J. A., Terminello, L. J., Asher, S. A., and Bormett, R. W.. Mat. Res. Soc. Proc. 437, 211 (1996).
26. Csencsits, R., Zuiker, C. D., Gruen, D. M., Krauss, A. R., Solid State Phenom. 51–52, 261(1996).10.4028/
27. Gruen, D. M., Liu, S., Krauss, A. R., Luo, J. and Pan, X., Appl. Phys. Lett. 64, 1502 (1994)
28. Erdemir, A., Bindal, C., Fenske, G. R., Zuiker, C., Cesncsits, R., Krauss, A. R. and Gruen, D. M., Diamond Films and Technology 6, 31 (1996).
29. Auciello, O., Krauss, A.R., Gruen, D.M., Meyer, E.M., Busmann, H.G., Tucek, J., Sumant, A., Jayatissa, A., Ding, M. Q., Moldovan, N., Mancini, D. C., and Gardos, M. N., Jour. of Microelectromechanical Systems (in press, 1999).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed