Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T04:29:00.928Z Has data issue: false hasContentIssue false

Twin Boundaries and Stacking Faults in Monazite (Monoclinic LaPO4)

Published online by Cambridge University Press:  15 March 2011

Randall S. Hay*
Affiliation:
Air Force Research Laboratory Materials and Manufacturing Directorate WPAFB, OH 45433-6533, U.S.A.
Get access

Abstract

Monazite (LaPO4) was indented at room temperature. Deformation twin boundaries and stacking faults were characterized by high resolution transmission electron microscopy. Kinked deformation twins were also characterized and analyzed. Three types of stacking faults associated with climb-dissociated partial dislocations were observed. Two were found on twin boundaries, and a third in the lattice. Formation mechanisms are discussed. The superimposition of stacking faults along twin boundaries during deformation twinning and the glide of climb-dissociated partial dislocations allowed by stacking fault migration are discussed. The possible relationship between the formation mechanisms for these defects and the low- temperature recrystallization and self-annealing of defects in monazite is considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mullica, D. F., Milligan, W. O., Grossie, D. A., Beall, G. W., Boatner, L. A., Inorg. Chim. Acta 95, 231236 (1984).Google Scholar
2. Morgan, P. E. D., Marshall, D. B., J. Am. Ceram. Soc. 78, 1553–63 (1995).Google Scholar
3. Marshall, D. B., Morgan, P. E. D., Housley, R. M., Cheung, J. T., J. Am. Ceram. Soc. 81, 951956 (1998).Google Scholar
4. Hikichi, Y., Nomura, T., J. Am. Ceram. Soc. 70, C252–C253 (1987).Google Scholar
5. Davis, J. B., Marshall, D. B., Housley, R. M., Morgan, P. E. D., J. Am. Ceram. Soc. 81, 21692175 (1998).Google Scholar
6. Muller, O., Roy, R., The Major Ternary Structural Families, Crystal Chemistry of Non-Metallic Materials (Springer-Verlag, New York, ed. 1st, 1974).Google Scholar
7. Keller, K. A. et al. , J. Am. Ceram. Soc. 86, 325332 (2003).Google Scholar
8. Lee, P.-Y., Imai, M., Yano, T., J. Ceram. Soc. Japan 112, 2934 (2004).Google Scholar
9. Kaya, C., Butler, E. G., Selcuk, A., Boccaccini, A. R., Lewis, M. H., J. Eur. Ceram. Soc. 22, 23332342 (2002).Google Scholar
10. Davis, J. B., Hay, R. S., Marshall, D. B., Morgan, P. E. D., Sayir, A., J. Am. Ceram. Soc. 86, 305316 (2003).Google Scholar
11. Hay, R. S., Ceram. Eng. Sci. Proc. 21, 203218 (2000).Google Scholar
12. Hay, R. S., Acta Mater. 51, 52555262 (2003).Google Scholar
13. Hay, R. S., Marshall, D. B., Acta Mater. 51, 52355254 (2003).Google Scholar
14. Hay, R. S., Philos. Mag. (accepted).Google Scholar
15. Hay, R. S., J. Am. Ceram. Soc. (accepted).Google Scholar
16. Hay, R. S., Welch, J. R., Cinibulk, M. K., Thin Solid Films 308–309, 389392 (1997).Google Scholar
17. Cinibulk, M. K., Welch, J. R., Hay, R. S., J. Am. Ceram. Soc. 79, 24812484 (1996).Google Scholar
18. Anstis, G. R., Hutchinson, J. L., in Dislocations in Solids Nabarro, F. R. N., Ed. (Elsevier Science Publishers, 1992), vol. 9, pp. 155.Google Scholar
19. Medlin, D. L., Carter, C. B., Angelo, J. E., Mills, M. J., Philos. Mag. A 75, 733747 (1997).Google Scholar
20. Howe, J. M., Dahmen, U., Gronsky, R., Philos. Mag. A56, 3151 (1987).Google Scholar
21. Parsons, J. R., Hoelke, C. W., J. Appl. Phys. 40, 866872 (1969).Google Scholar
22. Starkey, J., in Deformation Twinning Reed-Hill, R. E., Hirth, J. P., Rogers, H. C., Eds. (American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, NY, 1964) pp. 177191.Google Scholar
23. Marshall, D. B., McLaren, A. C., Phys. Chem Minerals 1, 351370 (1977).Google Scholar
24. Wooster, W. A., Mineral. Mag. 46, 265268 (1982).Google Scholar
25. Veyssiere, P., Carter, C. B., Philos. Mag. Lett. 57, 211220 (1988).Google Scholar
26. Mitchell, T. E., Donlon, W. T., Lagerlof, K. P. D., Heuer, A. H., in Deformation of Ceramic Materials II Tressler, R. E., Bradt, R. C., Eds. (Plenum Press, New York, 1984), vol. 18, pp. 125139.Google Scholar
27. Meldrum, A., Boatner, L. A., Ewing, R. C., Mineral. Mag. 64, 185194 (2000).Google Scholar
28. Harrison, T. M., Catlos, E. J., Montel, J.-M., in Phosphates: Geochemical, Geobiological, and Materials Importance Kohn, M. J., Rakovan, J., Hughes, J. M., Eds. (Mineralogical Society of America, Washington, DC, 2002), vol. 48, pp. 523552.Google Scholar
29. Gleadow, A. J. W., Belton, D. X., Kohn, B. P., Brown, R. W., in Phosphates - Geochemical, Geobiological, and Materials Importance Kohn, M. J., Rakovan, J., Hughes, J. M., Eds. (Mineralogical Society of America, Wahington, DC, 2002), vol. 48, pp. 579630.Google Scholar
30. Ewing, R. C., Wang, L., in Phosphates - Geochemical, Geobiological, and Materials Importance Kohn, M. J., Rakovan, J., Hughes, J. M., Eds. (Mineralogical Society of America, Wahington, DC, 2002), vol. 48, pp. 673699.Google Scholar