Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T11:32:05.576Z Has data issue: false hasContentIssue false

Tuning the Optical Properties of Large Gold Nanoparticle Arrays

Published online by Cambridge University Press:  21 March 2011

Beomseok Kim
Affiliation:
Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, (alexwei@purdue.edu)
Steven L. Tripp
Affiliation:
Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, (alexwei@purdue.edu)
Alexander Wei
Affiliation:
Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, (alexwei@purdue.edu)
Get access

Abstract

Gold nanoparticles in the mid-nanometer size regime can undergo self-organization into densely packed monoparticulate films at the air-water interface under appropriate passivation conditions. Films could be transferred onto hydrophilic Formvar-coated Cu grids by horizontal (Langmuir-Schaefer) deposition or by vertical retraction of immersed substrates. The latter method produced monoparticulate films with variable extinction and reflectance properties. Transmission electron microscopy revealed hexagonally close-packed arrays on the micron length scale. The extinction bands of these arrays shifted by hundreds of nanometers to near-infrared wavelengths and broadened enormously with increasing periodicity. Large particle arrays also demonstrated extremely high surface-enhanced Raman scattering (SERS), with enhancement factors greater than 107. Signal enhancements could be correlated with increasing periodicity and are in accord with earlier theoretical and experimental investigations involving nanoparticle aggregate structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 (a) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335–38.Google Scholar
(b) Brust, M.; Bethell, D.; Schiffrin, D. J.; Kiely, C. J. Adv. Mater. 1995, 7, 795–97.Google Scholar
(c) Andres, R. P.; Bielefeld, J. D.; Henderson, J. I.; Janes, D. B.; Kolagunta, V. R.; Kubiak, C. P.; Mahoney, W. J.; Osifchin, R. G. Science 1996, 273, 1690–93.Google Scholar
(d) Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephens, P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428–33.Google Scholar
(e) Shalaev, V. M.; Moskovits, M. Nanostructured Materials: Clusters, Composites, and Thin Films; ACS Symposium Series, Vol. 679; American Chemical Society: Washington, DC, 1997.Google Scholar
2 To the best of our knowledge, the largest unit size reported for a 2D gold nanoparticle array (assembled by electrophoretic deposition) is 18 nm:Google Scholar
(a) Giersig, M.; Mulvaney, P. J. Phys. Chem. 1993, 97, 6334–36.Google Scholar
(b) Giersig, M.; Mulvaney, P. Langmuir 1993, 9, 3408–13.Google Scholar
3 Osifchin, R. G., Ph. D. thesis, Purdue University, 1994. The flocculation of alkanethiol-coated Au nanoclusters with diameters larger than 10 nm has also been studied in some detail as a function of surfactant:Google Scholar
Weisbecker, C. S., Merritt, M. V., Whitesides, G. M. Langmuir 1996, 12, 3763–72.Google Scholar
4 (a) Biggs, S.; Mulvaney, P. J. Chem. Phys. 1994, 100, 8501–05.Google Scholar
(b) Kane, V.; Mulvaney, P. Langmuir 1998, 14, 3303–11.Google Scholar
5 Israelachvili, J. Intermolecular and Surface Forces; 2nd ed.; Academic Press: New York, 1992. Chapter 10.Google Scholar
6 (a) Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer: New York, 1995; Vol. 25.Google Scholar
(b) Henrichs, S.; Collier, C. P.; Saykally, R. J.; Shen, Y. R.; Heath, J. R. J. Am. Chem. Soc. 2000, 122, 4077–83.Google Scholar
(c) Remacle, F.; Levine, R. D. J. Am. Chem. Soc. 2000, 122, 4084–91.Google Scholar
7 The effect of chain density on conformational free energies has been theoretically modeled for surfactant monolayers. See: Szleifer, I.; Ben-Shaul, A.; Gelbart, W. M. J. Phys. Chem. 1990, 94, 5081–89. and references cited within.Google Scholar
8 (a) Stavens, K. B.; Pusztay, S. V.; Zou, S.; Andres, R. P.; Wei, A. Langmuir 1999, 15, 8337–39.Google Scholar
(b) Wei, A.; Stavens, K. B.; Pusztay, S. V.; Andres, R. P. MRS Symp. Proc. Ser. 1999, 581, 5963.Google Scholar
9 The synthesis of resorcinarenes similar to 1 is described in the literature: (a) Moran, J. R.; Karbach, S.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 5826–28.Google Scholar
(b) Gibb, B. C.; Mezo, A. R.; Causton, A. S.; Fraser, J. R.; Tsai, F. C. S.; Sherman, J. C. Tetrahedron 1995, 51, 8719–32.Google Scholar
10 Surfactants with several well-spaced thiol groups have been suggested for enhanced adsorption to gold surfaces because of cooperative binding as well as low probability of desorption via disulfide formation:Google Scholar
Schlenoff, J. B.; Li, M.; Ly, H. J. Am. Chem. Soc. 1995, 117, 12528–36.Google Scholar
11 Mohri, N.; Matsushita, S.; Inoue, M. Langmuir 1998, 14, 2343–47.Google Scholar
12 Fendler, J. H. Curr. Op. Colloid Interface Sci. 1996, 1, 202–07.Google Scholar
13 Kim, B.; Tripp, S. L.; Wei, A. J. Am. Chem. Soc. 2001, 123, 7955–56.Google Scholar
14 Blodgett, K. A.; Langmuir, I. Phys. Rev. 1937, 21, 964.Google Scholar
15 Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin, 1988; Vol. 111.Google Scholar
16 (a) Hornauer, D.; Kapitza, H.; Raether, H. J. Phys. D 1974, 1, L100.Google Scholar
(b) Kapitza, H. Opt. Comm. 1976, 16, 73.Google Scholar
17 (a) Yguerabide, J.; Yguerabide, E. E. Anal. Biochem. 1998, 262, 137–56.Google Scholar
(b) Yguerabide, J.; Yguerabide, E. E. Anal. Biochem. 1998, 262, 137–56.Google Scholar
18 (a) Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R. Science 1997, 277, 1978–81.Google Scholar
(b) Shiang, J. J.; Heath, J. R.; Collier, C. P.; Saykally, R. J. J. Phys. Chem. B 1998, 102, 3425–30.Google Scholar
19 Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. J. Chem. Phys. B 2001, 105, 3441–52.Google Scholar
20 Wasileski, S. A., Zou, S., Weaver, M. J. Appl. Spectrosc. 2000, 54, 761–72.Google Scholar
21 (a) Vo-Dinh, T. Trends Anal. Chem 1998, 17, 557–82.Google Scholar
(b) Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem. Rev. 1999, 99, 2957–75.Google Scholar
22 Gift, A. D.; Ma, J. Y.; Haber, K. S.; McClain, B. L.; Ben-Amotz, D. J. Raman Spectrosc. 1999, 30, 757765.Google Scholar
23 The number of adsorbates in a 30- m diameter spot was approximated by using the surface area of an ideally planar array of hexagonally close-packed particles, which has a surface roughness of 1.8 independent of unit particle size. If surfactant adsorption is assumed to be at 75% maximum coverage (ca. 2 nm2/molecule), the number of adsorbates contributing toward the Raman signal is estimated to be 6.3 × 108 molecules. For experimentally measured cross-sectional areas of 1 in a densely packed geometry, see:Google Scholar
(a) Moreira, W. C.; Dutton, P. J.; Aroca, R. Langmuir 1994, 10, 4148–52.Google Scholar
(b) Kurita, E.; Fukushima, N.; Fujimaki, M.; Matsuzawa, Y.; Kudo, K.; Ichimura, K. J., Mater. Res. 1998, 8, 397403.Google Scholar
24 For further studies, see: Wei, A.; Kim, B.; Sadtler, B.; Tripp, S. L., Chem Phys Chem 2001, 2, in press.Google Scholar
25 (a) Liver, N.; Nitzan, A.; Gersten, J. I., Chem. Phys. Lett. 1984, 111, 449–54. (b) Tsai et al (1984)Google Scholar
(c) Garcia-Vidal, F. J.; Pendry, J. B., Phys. Rev. Lett. 1996, 77, 1163–66.Google Scholar
26 (a) Blatchford, C. G.; Campbell, J. R.; Creighton, J. A., Surface Sci. 1982, 120, 435–55.Google Scholar
(b) Albano, E. V.; Daiser, S.; Ertl, G.; Miranda, R.; Wandelt, K., Phys. Rev. Lett. 1983, 51, 2314–17.Google Scholar
(c) Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J., Science 1995, 267, 1629–32.Google Scholar
(d) Xiao, T.; Ye, Q.; Sun, L. J., Phys. Chem. B 1997, 101, 632–38.Google Scholar
(e) Kneipp, K.; Kneipp, H.; Manoharan, R.; Hanlon, E. B.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Appl. Spectrosc. 1998, 52, 1493–97.Google Scholar
27 Jensen, T.; Kelly, L.; Lazarides, A.; Schatz, G. C. J. Cluster Sci. 1999, 10, 295317.Google Scholar
28 Recently, Natan and coworkers have reported a methodology for preparing large colloidal gold nanoparticles with low size dispersity and ellipticity: Brown, K. R.; Walter, D. G.; Natan, M. J. Chem. Mater. 2000, 12, 306–13.Google Scholar
29 Blatchford, C. G.; Siiman, O.; Kerker, M. J. Phys. Chem. 1983, 87, 2503–08.Google Scholar