Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T16:21:52.892Z Has data issue: false hasContentIssue false

Tuning of Redox Behavior and Fluorescence of Cyano-containing Oligophenylenevinylenes

Published online by Cambridge University Press:  21 March 2011

Michelle S. Liu
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120
Xuezhong Jiang
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120
Get access

Abstract

A series of cyano-containing distyrylbenzenes which have the electron-withdrawing groups functionalized on the central phenylene ring were synthesized via the Wittig-Horner reaction. Electrochemical study showed that the electron-affinity of these molecules increased with the increasing strength of electron-accepting groups. 1,4-Bis(4'- t-Butylstyryl)-2,5-bis(dicyanovinyl)benzene (6) possessed a low LUMO energy level at -4.01 eV, which provided a better match to the work function of Al cathode. Compared to the cyano-terephthalylidene (2), introducing cyano groups on the aromatic ring (3) instead of on the vinylene linkage provided better stabilization to the radical anions. The emission colors spanning green, yellow, orange, red could be achieved by changing the electron-accepting strength of oligophenylenevinylenes (3-6). Energy gap reductions were caused by a stronger decrease of the LUMO energies than the HOMO energies. These results provided new insights for the design of suitable polymers with much improved electron affinities facilitating electron injection from higher work function metal electrodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kraft, A., Grimsdale, A. C. and Holmes, A. B., Angew. Chem., Int. Ed. Engl. 37, 402 (1998).Google Scholar
2. Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Santos, D. A. Dos, Brédas, J. L., Lögdlund, M. and Salaneck, W. R., Nature 397, 121 (1999).Google Scholar
3. Renak, M. L., Bartholomew, G. P., Wang, S., Ricatto, P. J., Lachicotte, R. J., Bazan, G. C., J. Am. Chem. Soc. 121, 7787 (1999).Google Scholar
4. Oelkrug, D., Tompert, A., Gierschner, J., Egelhaaf, H.-J., Hanack, M., Hohloch, M. and Steinhuber, E., J. Phys. Chem. B, 102, 1902 (1998).Google Scholar
5. Strehmel, B., Sarker, A. M., Malpert, J. H., Strehmel, V., Seifert, H. and Neckers, D. C., J. Am. Chem. Soc. 121, 1226 (1999).Google Scholar
6. Miao, Y.-J., Herkstroeter, W. G., Sun, B. J., Wong-Foy, A. G. and Bazan, G. C., J. Am. Chem. Soc. 117, 11407 (1995).Google Scholar
7. Gill, R. E., Hutten, P. F. van, Meetsma, A. and Hadziioannou, G., Chem. Mater. 8, 1341 (1996).Google Scholar
8. Strukelj, M., Papadimitrakopoulos, F., Miller, T. M. and Rothberg, L. J., Science, 267, 1969 (1995).Google Scholar
9. Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H. and Holmes, A. B., Nature 365, 628 (1993).Google Scholar
10. HOMO/LUMO energy levels were estimated based on the reference energy level of ferrocene, 4.8 eV below the vacuum level (EFOC = 0.12 V vs Ag/Ag+).Google Scholar