Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-26T10:35:33.725Z Has data issue: false hasContentIssue false

The True Liquid Crystal Approach to Mesoporous Silica

Published online by Cambridge University Press:  10 February 2011

George S. Attard
Affiliation:
Department of Chemistry, University of Southampton, SO 17 1BJ, United Kingdom
Mark Edgar
Affiliation:
Institut für Organische Chemie, Freie Universität Berlin, Takustr.3, 14195 Berlin, Germany
James W. Emsley
Affiliation:
Department of Chemistry, University of Southampton, SO 17 1BJ, United Kingdom
Christine G. Göltner
Affiliation:
Max-Planck-Institute for Colloids and Interfaces, Kantstr. 55, 14513 Teltow/Seehof, Germany
Get access

Abstract

Liquid crystalline phases, consisting of nonionic surfactant and water, are exploited as templates for the synthesis of inorganic nanostructures In this approach the aqueous domains of a lyotropic liquid crystal phase function as a confining medium, in which the polymerisation of a watersoluble precursor takes place without destroying the nanostructure. Conducting the prepration of mesoporous silica in a lyotropic liquid crystal phase has considerable advantages over previous routes towards mesoporous ceramic oxides. (i) The nanostructure of the solid can be predicted a priori by knowing the phase structure of the liquid crystal before solidification, (ii) this approach allows the use of nonionic surfactants as templates, (iii) the progress of the reaction can be observed by a variety of methods, such as polarised light optical microscopy, X-ray diffraction, and deuterium NMR spectroscopy, all of which are noninvasive. The synthesis and a new way of monitoring the temporal evolution of the inorganic nanostructure using deuterium NMR spectroscopy are described. The results show unambiguously that the lyotropic liquid crystal phase acts as a template for the nanostructure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] a) Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., Beck, J. S:, Nature 359, 710712 (1992); b) J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 114, 10834–10843 (1992).Google Scholar
[2] Monnier, A., Schüth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R. S., Stucky, G. D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M., Chmelka, B. F., Science 261, 12991303 (1993).Google Scholar
[3] Cheng, C-F., Luan, Z., Klinowski, J., Langmuir 11 (1995).Google Scholar
[4] Steel, A., Carr, S. W., Anderson, M. W., J Chem. Soc., Chem. Commun. (1994).Google Scholar
[5] Bagshaw, S. A., Prouzet, E., Pinnavaia, T. J., Science, 269, 242244 (1995).Google Scholar
[6] Attard, G. S., Glyde, J. C., Göltner, C. G., Nature 378, 366368 (1995).Google Scholar
[7] Mitchell, D. J., Tiddy, G. J. T., Waring, L., Bostock, T., McDonald, M. P., J. Chem. Soc. Faraday Trans. 79 9751000 (1983).Google Scholar
[8] a) Chen, K. C., Tsuchiya, T., Mackenzie, J. D., J non-cryst. Solids 81, 227237 (1986); b) J. D. Mackenzie, J. non-cryst. Solids 100, 162–168 (1988).Google Scholar