Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T01:06:51.032Z Has data issue: false hasContentIssue false

Tribology and Surface Mechanical Properties of Excimer Laser Nitrided Titanium

Published online by Cambridge University Press:  21 February 2011

T. R. Jervis
Affiliation:
Materials Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87545
J. P. Hirvonen
Affiliation:
Metallurgy Laboratory, Technical Research Institute of Finland, SF–02150 Espoo, Finland.
T. G. Zocco
Affiliation:
Materials Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87545
J. R. Tesmer
Affiliation:
Materials Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

We have nitrided Ti-6A1-4V alloys using excimer laser pulses at 1.2 J-cm−2 in high purity N2 at approximately one atmosphere. Substantial nitrogen and oxygen incorporation resulted from multiple pulse processing. The surface microstructure that results is of fine grained precipitates in the Ti alloy matrix. Formation of a TiN surface film was not observed. We have examined the tribological and mechanical properties of these surfaces using pin-on-disk and nanoindenter techniques respectively. Nitrogen alloying results in a period of reduced friction and torque noise in the pin-on-disk measurements. At higher N concentrations, abrasive wear of the pin is observed, but with little deterioration of the disk surface. This is consistent with the formation of a transfer film at the sliding interface. Nanoindenter measurements of the surfaces show increasing hardness proportional to nitrogen incorporation. The tribological properties can therefore be understood to result from a combination of tribochemical effects and increased surface hardness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Metals Handbook, 9th Edition, Am. Soc. for Metals, Metals Park, OH (1980).Google Scholar
2 Bayles, R. A., Meyn, D. A., and Moore, P. G., in Lasers in Metallurgy, Mukherjee, K. and Mazumder, J., Eds. (TMS, Warrendale, PA, 1981) p 127.Google Scholar
3 Konitzer, D. G., Muddle, B. C., and Fraser, H. L., Metall. Trans. 14A 1979 (1983).Google Scholar
4 Katayama, S., Matsunawa, A., Morimoto, A., Ishimoto, S., and Arata, Y., in Laser Processing of Materials, Mukherjee, K. and Mazumder, J., Eds, (TMS, Warrendale, PA, 1984), pl59.Google Scholar
5. Bieler, H. W., Schwarz, M., Kreutz, E. W., Gasser, A., Gillner, A., and Wissenbach, K., in Laser Materials Processing, Proceedings of the 6th International Congress on Applications of Lasers and Electro-optics, Ream, S. L., Ed. (Springer-Verlag, Berlin, 1987) p 195.Google Scholar
6 Akgun, O. V. and Inal, O. T., J. Mat. Sci. 27 1404 (1992).Google Scholar
7 See for Example: Laser Materials Processing, Proceedings of the 6th International Congress on Applications of Lasers and Electro-optics, Ream, S. L., Ed. (Springer-Verlag, Berlin, 1987).Google Scholar
8 D’Anna, E., Leggieri, G., Luches, A., Martino, M., Drigo, A. V., Mihailescu, I. N., and Ganatsios, S., J. Appl. Phys. 69 1687 (1991).Google Scholar
9. Oliver, W. C., Hutchings, R., and Pethica, J. B., Metall. Trans. 15A 2221 (1984).Google Scholar
10 Martinella, R., Giovanardi, S., Chevallard, G., Villani, M., Molinari, A., and Tosello, C., Mat. Sci. & Eng. 69 247 (1985).Google Scholar
11 Williams, J. M. and Buchanan, R. A., Mat. Sci. & Eng. 69 237 (1985).Google Scholar
12 Sioshansi, P., Oliver, R. W., and Matthews, F. D., J. Vac. Sci. Technol. A3 2670 (1985).Google Scholar
13 Pivin, J. C., Zheng, P., and Ruault, M. O., Mat. Sci. & Eng. A115 83 (1989).Google Scholar
14 . Nath, V. C., Sood, D. K., and Manory, R. R., Nuc. Inst. Methods. B59 946 (1991).Google Scholar
15 Qiu, X., Dodd, R. A., Conrad, J. R., Chen, A., and Worzala, F. J., Nuc. Inst. Methods. B59 951 (1991).Google Scholar
16 Hirvonen, J-P., Jervis, T. R., & Zocco, T. G., Mat. Res. Soc. Symp. Proc. 157 431 (1990).Google Scholar
17 Jervis, T. R., Zocco, T. G., Hubbard, K. M., & Nastasi, M., Metall. Trans. 24A 215 (1993).Google Scholar
18 Jervis, T. R., Nastasi, M., & Hirvonen, J-P., Mater. Res. Soc. Symp Proc. 279 665678 (1993).Google Scholar
19 Foster, L. A., Tesmer, J. R., Jervis, T. R., and Nastasi, M., Nucl. Inst. Meth. B79 454 (1993).Google Scholar
20 Oliver, W. C., Hutchings, R., and Pethica, J. B, ASTM Spec. Tech. Pub. 889 90 (1986).Google Scholar
21 Oliver, W. C. & Pharr, G. M., J. Mater. Res. 7 1564 (1992).Google Scholar