Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T22:43:30.960Z Has data issue: false hasContentIssue false

Trapping of Atomic Hydrogen in a-Si:H from G – D Silane Plasma

Published online by Cambridge University Press:  25 February 2011

S. A. Cruz-Jimenez
Affiliation:
Instituto de Investigaciones en Materiales, U. N. A.M., Apatado Postal 70-360, 04510, México, D. F., México.
S. Muhl
Affiliation:
Instituto de Investigaciones en Materiales, U. N. A.M., Apatado Postal 70-360, 04510, México, D. F., México.
R. Salcedo
Affiliation:
Instituto de Investigaciones en Materiales, U. N. A.M., Apatado Postal 70-360, 04510, México, D. F., México.
Get access

Extract

Plasma Enhanced Chemical Vapor Deposition CPECVD) is used extensively for the preparation of amorphous materials. However, to date we do not have a full description of the deposition process. By this we refer to the following steps ; the source gas decomposition [1], the gas phase reactions, diffusion within the plasma [a], adsorption of the various species, solid-gas reactions, nucleation and subsequent film growth [3–7]. To a large extent the diversity of the processes which are involved in film formation explain the observed variation in the characteristics of supposedly identical material made in different laboratories. Even with such variations certain trends relating the properties of the materials with the growth processes are apparent. In particular it is well established that hydrogen saturation of the dangling bonds is essential. Although how much hydrogen is optimum, and how it is incorporated in the growing film are questions of considerable importance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amorphous Semiconductors, in Topics i n Appl ied Physics Vol.36, edited by Brodsky, M.H.(Springer Verlag, Berlin, 1979).Google Scholar
2. Savvides, N., Applicat. Surf. Sci. 227/23, 916,(1985).Google Scholar
3. Knights, J.C., Jpn. J. Appl. Phys. 18, 101,(1979).Google Scholar
4. Dragone, T., Wagner, S.& Moustakas, T.D., in Proc. Ist. Int. Photovolt. Sci. and Eng. Conf. CKobe, Japan, 1984. 711Google Scholar
5. Robertson, J., Phys. Rev. B28, 4658,(1983).Google Scholar
6. Tiedje, T., Moustakas, T.D.& Cebulka, J.M., Phys. Rev. B23, 5634,(1981).Google Scholar
7. Moustakas, T.D., J. Electron Mater 8, 391,(1979).Google Scholar
8. Kushner, M.J., J. Appl. Phys. 58, 4024,(1985).Google Scholar
9. Chapman, B., Glow Discharge Processes, Sputtering and Plasma Etching, (Wiley, New York, 1980).Google Scholar
10. Davis, W.D& Vanderslice, T.A., Phys. Rev. 131, 219,(1963).Google Scholar
11. Teer, D.G., J. Adhesion, 8, 289,(1977).Google Scholar
12. Abril, I., Gras-Marti, A.& Abarca, J.A. Valles, J. Vac. Sci. Technol. A4, 1773,(1986).Google Scholar
13. Rickards, J., Vacuum, 34, 559,(1983).Google Scholar
14. Cruz, S.A.& Mendez-Rosales, V.M., Mater. Res. Soc. Proc., 95, 273, (Elsevier, New York, (1987).Google Scholar
15. Cruz, S.A.& Méndez-Rosales, V.M., Thin Solid Films, 151, 263, (1987).Google Scholar
16. Coburn, J.W.& Kay, E., J. Appl. Phys., Vol. 43, 12, 4965 (1972)Google Scholar