Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T00:46:57.472Z Has data issue: false hasContentIssue false

Trapping Behavior of Thin Siliconoxynitride Layers Prepared by Rapid Thermal Processing

Published online by Cambridge University Press:  15 February 2011

R. Beyer
Affiliation:
Technische Universität Chemnitz, Institut für Physik, Professur für Halbleiterphysik, D-09107 Chemnitz, Germany, beyer@physik.tu-chemnitz.de
H. Burghardt
Affiliation:
Technische Universität Chemnitz, Institut für Halbleiter- und Mikrosystemtechnik, Professur für Mikrotechnologie, D-09107 Chemnitz, Germany
R. Reich
Affiliation:
Technische Universität Chemnitz, Institut für Halbleiter- und Mikrosystemtechnik, Professur für Mikrotechnologie, D-09107 Chemnitz, Germany
E. Thomas
Affiliation:
Technische Universität Chemnitz, Institut für Physik, Professur für Halbleiterphysik, D-09107 Chemnitz, Germany, beyer@physik.tu-chemnitz.de
D. Grambole
Affiliation:
Forschungszentrum Rossendorf, Institut für lonenstrahlphysik und Materialforschung, PF 510119, D-01314 Dresden, Germany
F. Herrmann
Affiliation:
Forschungszentrum Rossendorf, Institut für lonenstrahlphysik und Materialforschung, PF 510119, D-01314 Dresden, Germany
T. Scholz
Affiliation:
Institut Fresenius für Angewandte Festkörperanalytik, Königsbrücker Landstraße 159, D-01 109 Dresden, Germany
J. Albrecht
Affiliation:
Institut Fresenius für Angewandte Festkörperanalytik, Königsbrücker Landstraße 159, D-01 109 Dresden, Germany
D. R. T. Zahn
Affiliation:
Technische Universität Chemnitz, Institut für Physik, Professur für Halbleiterphysik, D-09107 Chemnitz, Germany, beyer@physik.tu-chemnitz.de
T. Gessner
Affiliation:
Technische Universität Chemnitz, Institut für Halbleiter- und Mikrosystemtechnik, Professur für Mikrotechnologie, D-09107 Chemnitz, Germany
Get access

Abstract

Siliconoxynitride layers with thicknesses between 5 and 10 nm were grown on (100) oriented silicon by rapid thermal processing (RTP) using either N2O or NH3 as nitridant. In order to study the trapping behaviour at the interface and in the insulator bulk, capacitance-voltage (CV) and current-voltage (IV) measurements have been performed combined with different magnitudes of Fowler-Nordheim stress. In addition, Deep Level Transient Spectroscopy (DLTS) has been applied for interface state detection. Auger Electron Spectroscopy (AES) has been used to obtain depth profiles for Si, N, O and C. The deconvolution of the AES signal displays significant peak contributions related to intermedium oxidation states. Nuclear Reaction Analysis (NRA) was successfully applied for hydrogen detection in buried SiOxNy thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hwang, H., Ting, W., Kwong, D.L. and Lee, J., IEDM Tech. Dig, 421 (1990)Google Scholar
2. Hori, T., Iwasaki, H., J. Appl. Physics 65, 629 (1989)Google Scholar
3. Fukuda, H., Arakawa, T. and Ohno, S., Electron. Letters 26, 1505 (1990)Google Scholar
4. Okada, Y., Tobin, P.J., Rushbrook, P. and DeHart, W.L., IEEE Transactions on Electr. Dev. 41, 191 (1994)Google Scholar
5. Griscom, D. L., in The Physics and Technology of Amorphous SiO2 , edited by Devine, R. A. B. (Plenum Press, New York, 1988), p. 125134 Google Scholar
6. Belkouch, S., Jean, C., Aktik, C. and Ameziane, E.L., Appl. Phys. Letters 67, 530 (1995)Google Scholar
7. Habraken, F.H.P.M., Evers, E.J. and Kuiper, A.E.T., Appl. Phys. Letters 44, 62 (1984)Google Scholar
8. Elferink, J.B. Oude, Van der Heide, V.A., Bik, W.M. Arnold, Habraken, F.H.P.M. and Van der Weg, W.F., Appl. Surface Sci. 30, 197 (1987)Google Scholar
9. Beyer, R., Burghardt, H., Prösch, G., Thomas, E., Reich, R., Grambole, D., Herrmann, F., Weidner, G., Syhre, H. and Dittmar, K., phys. stat. sol. (a) 145, 447 (1994)Google Scholar