Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-17T18:26:47.769Z Has data issue: false hasContentIssue false

Transport Properties of B-, P-Doped and Undoped 50 kHz PECVD Microcrystalline Silicon

Published online by Cambridge University Press:  21 February 2011

M.A. Hachicha
Affiliation:
LEPES-CNRS, BP 166x, F-38042, Grenoble, France, (associated to Univ. J. Fourier de Grenoble)
Etienne Bustarret
Affiliation:
Max-Planck-Institute für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80, FRG
Get access

Abstract

Undoped 500 nm-thick silicon layers with a crystalline fraction around 95% and an average grain size of 20 nm have been deposited at 350°C by 50 kHz triode PECVD in a H2/SiH4 mixture, in the presence of a magnetic field. Their room temperature (rt) dc conductivity μrt is 0.03 Δ1cm−1 for a Hall mobility of 0.8 cm 2V−1s−1.

The study by SIMS, infrared absorption, grazing angle x-ray diffraction and Raman scattering spectroscopies of the doped samples shows how the crystalline fraction and the grain size drop as the B2H6/SiH4 and PH3/SiH4 volumic ratios increase from 10 ppm to 1%.

The rt dc conductivity reaches 2 Δ−1 cm−1 (Hall mobility: 15 cm2V−ls−1) for a solid phase density of 1019 cm−3 boron atoms, and 30 Δ−1cm−1 (Hall mobility: 55 cm2V−ls−1) at the maximum P incorporation of 8 × 1020cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Vepíek, S., Iqbal, Z., Kuhne, R.O., Capezzuto, P., Sarott, F.A., Gimzewski, J.K., J. Phys. C 16, 6241 (1983).Google Scholar
[2] Konuma, M., Curtins, H., Sarott, F.A., Vepfek, S., Phil. Mag. B 55, 377 (1987).Google Scholar
[3] Tsu, R., Gonzalez-Hernandez, J., Chao, S.S., Lee, S.C., Tanaka, K., Appl. Phys. Lett. 40, 534 (1982).Google Scholar
[4] Spear, W.E., Willeke, G., Lecomber, P.G., Fitzgerald, A.G., J. de Physique (France) 42, C4257 (1981).Google Scholar
[5] Hachicha, M.A., Bruyere, J.C., Bustarret, E., Deneuville, A., Brunel, M., “Ion and Plasma Assisted Techniques 87”, Int. Conf. Proc. published by Conferences Exhibitions Publications Consultants Ltd., Edinburgh (UK), p. 360 (1987).Google Scholar
[6] Willeke, G., Spear, W.E., Jones, D.I., Lecomber, P.G., Phil. Mag. B 46, 177 (1982).Google Scholar
[7] Mori, K., Kitagawa, M., Hirao, T., Ishihara, S., Ohno, M., Jpn. J. Appl. Phys. 20, 2431 (1981).Google Scholar
[8] Lifshitz, N., Luryi, S., Sheng, T.T., Appl. Phys. Lett. 51, 1824 (1987).Google Scholar
[9] Hamasaki, T., Kurata, H., Hirose, M., Osaka, Y., Appl. Phys. Lett. 37, 1084 (1980).Google Scholar
[10] Bustarret, E., Vaillant, F., Hepp, B., Mater. Res. Soc. Symp. Proc. 118, 123 (1988).Google Scholar
[11] Bustarret, E., Hachicha, M.A., this volume.Google Scholar
[12] Mishima, Y., Hirose, M., Osaka, Y., J. Appl. Phys. 51, 1157 (1980).Google Scholar
[13] Bustarret, E., Hachicha, M.A., Brunel, M., Appl. Phys. Lett. 52, 1675 (1988).Google Scholar
(14] Satoh, T., Hiraki, A., Jap. J. Appl. Phys. 24, L491 (1985).Google Scholar