Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T15:16:16.095Z Has data issue: false hasContentIssue false

Transport and Recombination Channels in Undoped Microcrystalline Silicon Studied by ESR and EDMR

Published online by Cambridge University Press:  15 February 2011

D. Will
Affiliation:
Fachbereich Physik, Philipps Universität, Renthof 5, 35032 Marburg, Germany
C. Lerner
Affiliation:
Fachbereich Physik, Philipps Universität, Renthof 5, 35032 Marburg, Germany
W. Fuhs
Affiliation:
Hahn-Meitner-Institut, Abteilung Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
K. Lips
Affiliation:
Hahn-Meitner-Institut, Abteilung Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
Get access

Abstract

We present a detailed study of ESR and spin-dependent transport (EDMR) on μc-Si. We identify to different types of defects at g=2.0055(±3) and g=2.0044(±5) and study their influence on transport and recombination by stepwise annealing the samples. We find that transport is not controlled by defects if ND<1018 cm−3. For ND>1018cm−3 a dramatic decrease of the conductivity is found and we identify a hopping contribution in transport. To explain our ESR and EDMR results we propose a simple model where most defects are distributed at the surface of the columns and transport is along percolation paths. We also observe minor metastable changes of the defect density which are assigned to adsorption of atmospheric oxygen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Willeke, G., in Amorphous and macrocrystalline semiconductor devices, edited by Kanicki, J. (Artech House, London, 1991), p. 55.Google Scholar
2 Finger, F., Malten, C., Hapke, P., Carius, R., Flückiger, R., and Wagner, H., Phil. Mag. Lett. 70, 247 (1994).Google Scholar
3 Hasegawa, S., Narikawa, S., and Kurata, Y., Phil. Mag. b 48, 431 (1983).Google Scholar
4 Veprek, S., Iqbal, Z., Kühne, R.O., Capezzuto, P., Sarott, F.-A., and Gimizewski, J.K., J. Phys. C: Solid State Phys. 16, 6241 (1983).Google Scholar
5 Lips, K., Lerner, C., and Fuhs, W., J. Non-Cryst. Solids 198–200, 267 (1995).Google Scholar
6 Torres, P., Meier, J., Flückiger, R., Kroll, U., Anna Selvan, J.A., Keppner, H., and Shah, J., Appl. Phys. Lett. 69, 1373 (1996).Google Scholar
7 Ruff, D., Sieber, I., Mell, H., and Fuhs, W., to be published.Google Scholar
8 Lips, K., Schutte, S., and Fuhs, W., Phil Mag B 65, 945 (1992).Google Scholar
9 Malten, C., PHD thesis (RTWH, Aachen, Germany) (1995).Google Scholar
10 Pointdexter, E.H., Caplan, E.H., Deal, B.E., and Razouk, R.R., J. Appl. Phys. 60, 879 (1981).Google Scholar
11 Dersch, H., Schweitzer, , and Stuke, J., Phys. Rev. B 28, 4678 (1983).Google Scholar
12 Hapke, P., Finger, F., Carius, R., Wagner, H., Prasad, K., and Flückiger, R., J. Non-Cryst. Solids 164–166, 981 (1993).Google Scholar
13 Müller, J., Finger, F., Malten, C., and Wagner, H., in Proc. MRS Fall Meeting, Boston, 1996, in print.Google Scholar
14 Kishimoto, N. and Morigaki, J., J. Phys. Soc. Jpn. J. Appl. Phys. 50, 1970 (1981).Google Scholar
15 Street, R.A., Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991).Google Scholar