Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T22:02:04.378Z Has data issue: false hasContentIssue false

Transparent p-n Heterojunction Thin Film Diodes

Published online by Cambridge University Press:  21 March 2011

M. K. Jayaraj
Affiliation:
Department of Physics, Oregon State University, Corvallis, OR 97331, USA
A. D. Draeseke
Affiliation:
Department of Physics, Oregon State University, Corvallis, OR 97331, USA
J. Tate
Affiliation:
Department of Physics, Oregon State University, Corvallis, OR 97331, USA
R. L. Hoffman
Affiliation:
Department of Electrical and Computer Engineering, Oregon State University, Corvallis, OR 97331, USA.
J. F. Wager
Affiliation:
Department of Electrical and Computer Engineering, Oregon State University, Corvallis, OR 97331, USA.
Get access

Abstract

Transparent p-n heterojunction diodes are fabricated using p-type CuYO2:Ca and n-type ZnO:Al thin films on a glass substrate coated with indium-tin oxide (ITO). The contact between the n-ZnO:Al / p-CuYO2:Ca heterojunction is found to be rectifying, while the ITO / ZnO:Al contact is ohmic. The typical ratio of forward to reverse current is 15 in the range -3 to 3V. The diode current-voltage characteristics are dominated by the flow of space charge limited current, which is ascribed to the existence of an insulating ZnO interfacial layer. The diode structure has a total thickness of 0.85 μm and an optical transmission of 40%-50% in the visible region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H. and Hosono, H., Nature 389, 939 (1997).Google Scholar
2. Duan, N., Sleight, A. W., Jayaraj, M. K. and Tate, J., Appl. Phys. Lett. 77, 1325 (2000).Google Scholar
3. Jayaraj, M. K., Draeseke, A., Tate, J., Duan, N., and Sleight, A. W., Proceedings of the MRS Workshop on Transparent Conducting Oxides, Denver, CO, June 2000; M. K. Jayaraj, A. D. Draeseke, J. Tate, and A. W. Sleight, submitted to Thin Solid Films (2001).Google Scholar
4. Ueda, K., Hase, T., Yanagi, H., Kawazoe, H., Hosono, H., Ohta, H., Orita, M., and Hirano, M., Appl. Phys. Lett.. 89, 1790 (2001).Google Scholar
5. Nagarajan, R., Draeseke, A. D., Sleight, A. W., and Tate, J., (J. Appl. Phys., 2001, in press).Google Scholar
6. Kudo, A., Yanagi, H., Ueda, K., Hosono, H., Kawazoe, H., and Yano, Y., Appl. Phys. Lett.. 75, 2851 (1999).Google Scholar
7. Ohta, H., Kawamura, K., Orita, M., Hirano, M., Sarukura, N. and Hosono, H., Appl. Phys. Lett. 77, 475 (2000).Google Scholar
8. Sato, H., Minami, T., Takata, S. and Yamada, T., Thin Solid Films 236, 27 (1993).Google Scholar
9. Aoki, T., Hatanaka, Y., and look, D. C., Appl. Phys. Lett. 70, 3257 (2000); Y. R. Ryu, W. J. Kim, and H. W. White, Jour. Crystal Growth 219, 419 (2000).Google Scholar
10. Yanagi, H., Hase, T., Ibuki, S., Ueda, K., and Hosono, H., Appl. Phys. Lett., 78, 1583 (2001).Google Scholar
11. Sze, S. M., Physics of Semiconductor Devices (John Wiley and Sons, New York, 1981) pp. 8489 & 117-122.Google Scholar
12. Lampert, M. A. and Mark, P., Current Injection in Solids (Academic Press, New York and London, 1970) pp. 1424.Google Scholar
13. Hoffman, R. L., Wager, J. F., Jayaraj, M. K., and Tate, J. (unpublished).Google Scholar
14. Benko, F. A. and Koffyberg, F. P., Can. J. Phys. 63, 1306 (1985).Google Scholar