Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T00:50:12.937Z Has data issue: false hasContentIssue false

Transient Nucleation in Devitrification

Published online by Cambridge University Press:  15 February 2011

A. L. Greer*
Affiliation:
University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ, U.K.
Get access

Abstract

A review is given of transient crystal nucleation in glassy or amorphous solids. The types of behaviour are surveyed. It is shown that the kinetics can be quantitatively modelled and that the matching of experiment and theory provides an important test of the classical theory. Examples are considered of homogeneous nucleation (affecting glass formation), heterogeneous nucleation, and nucleation at an interphase interface. While the emphasis is on transient effects of the kind implicit in the classical theory, it is shown that transients can arise for other reasons as well, thus potentially complicating the interpretation of experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. James, P.F., Phys. Chem. Glasses 15, 95 (1974).Google Scholar
2. Im, J.S. and Atwater, H.A., Appl. Phys. Lett. 52, 1766 (1990).Google Scholar
3. Buchwitz, M., Adlwarth-Dieball, R. and Ryder, P.L., Acta Metall. Mater. 41, 1885 (1993).Google Scholar
4. Kelton, K.F., Greer, A.L. and Thompson, C.V., J. Chem. Phys. 72, 6261 (1983).Google Scholar
5. Wu, D.T., J. Chem. Phys. 97, 2644 (1992).Google Scholar
6. Kashchiev, D., Surf. Sci. 14, 209 (1969).Google Scholar
7. Wu, D.T., in Kinetics of Phase Transformations, edited by Thompson, M.O., Aziz, M.J. and Stephenson, G.B. (Mater. Res. Soc. Proc. 205, Pittsburgh, PA 1992) pp. 411416.Google Scholar
8. Shneidman, V.A., Sov. Phys. Tech. Phys. 33, 1338 (1989).Google Scholar
9. Kelton, K.F. and Greer, A.L., in Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (Elsevier, Amsterdam, 1985), p. 223.Google Scholar
10. Im, J.S., Shin, J.H. and Atwater, H.A., Appl. Phys. Lett. 59, 2314 (1991).Google Scholar
11. Yang, C.M. and Atwater, H.A., in Phase Transformations in Thin Films — Thermodynamics and Kinetics, edited by Atzmon, M., Greer, A.L., Harper, J.M.E. and Libera, M.R. (Mater. Res. Soc. Proc. 311, Pittsburgh, PA 1993) pp. 185190.Google Scholar
12. Kelton, K.F. and Greer, A.L., Phys. Rev. B 38, 10089 (1988).Google Scholar
13. Greer, A.L. and Kelton, K.F., J. Am. Ceram. Soc. 74, 1015 (1991).Google Scholar
14. Fokin, V.M., Filipovich, V.N. and Kalinina, A.M., Fiz. Khim. Stekla 2, 129 (1976), (in Russian).Google Scholar
15. Kelton, K.F. and Greer, A.L., J. Non-Cryst. Solids 79, 295 (1986).Google Scholar
16. Greer, A.L., Evans, P.V., Hamerton, R.G., Shangguan, D.K. and Kelton, K.F., J. Cryst. Growth 99, 38 (1990).Google Scholar
17. Toschev, S. and Gutzow, I., Phys. Stat. Sol. 21, 683 (1967).Google Scholar
18. Kim, W.T. and Cantor, B., Acta Metall. Mater. 40, 3339 (1992).Google Scholar
19. Schumacher, P. and Greer, A.L., Mater. Sci. Eng. A (1994) in press.Google Scholar
20. Clemens, B.M., Johnson, W.L. and Schwarz, R.B., J. Non-Cryst. Solids 61&62, 817 (1984).Google Scholar
21. Thompson, C.V., J. Mater. Res. 7, 367 (1992).Google Scholar
22. Greer, A.L., J. Magn. Magn. Mater. 126, 89 (1993).Google Scholar
23. Evans, P.V. and Greer, A.L., in Principles of Solidification and Materials Processing, edited by Trivedi, R., Sekhar, J.A. and Mazumdar, J. (Oxford & IBH Pub. Co., New Delhi, 1989), Vol. 2, p. 741.Google Scholar
24. Reiss, H., J. Chem. Phys. 18, 840 (1950).Google Scholar
25. Greer, A.L., Karpe, N. and Bøttiger, J., J. Alloys Compounds 194, 199 (1993).Google Scholar
26. Wu, D.T., J. Chem. Phys. 99, 1990 (1993).Google Scholar