Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-25T16:49:56.582Z Has data issue: false hasContentIssue false

Transient Behavior of Color Diodes

Published online by Cambridge University Press:  10 February 2011

Jürgen Giehl
Affiliation:
Universität-GH Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Qi Zhu
Affiliation:
Universität-GH Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Peter Rieve
Affiliation:
Universität-GH Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Markus Böhm
Affiliation:
Universität-GH Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Get access

Abstract

Amorphous silicon (a-Si:H) based n-i-p-i-n/p-i-n-i-p structures serve as two color detectors. These basic structures can be extended to obtain multi color detection. In this paper capacitance measurements in the dark and under various illumination conditions as well as photo and bias current transient measurements in the time range 10-6-10-2 s are presented. The transients have been investigated for different bias voltages and photon fluxes.

Device capacitance becomes strongly bias dependent if illumination is applied to the sensor. It is dominated by the reverse biased diode of the nipin/pinip structure. Bias and photocurrent transients are influenced by defect recharging due to injection. For high photon fluxes only defect states near the band edges contribute to the transient current. This behavior is confirmed by dispersion like transient phenomena. Under dark conditions deep defects influence the transient behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fischer, H., Schulte, J., Giehi, J., Bohm, M., Schmitt, J. P. M. in Amorphous Silicon Technology 1992, edited by M, Thompson, Y. Hamakawa, P.G. LeComber, A. Madan, E. Schiff (Mat. Res. Soc. Symup. Proc. 258, Pittsburgh, PA, 1992), p. 11391144.Google Scholar
2. Zhu, Q., Stiebig, H., Rieve, P., Fischer, H. and Böhm, M. in Amorphous Silicon Technology 1994, edited by E. Schiff, M. Hack, A. Madan, M. Powell, A. Matsuda (Mat. Res. Soc. Symp. Proc. 336, Pittsburgh, PA, 1992), p. 843848.Google Scholar
3. Fischer, H., Schulte, J., Rieve, P. and Böhm, M. in Amorphous Silicon Technology 1994, edited by E. Schiff, M. Hack, A. Madlan, M. Powell, A. Matsuda (Mat. Res. Soc. Syrup. Proc. 336, Pittsburgh, PA, 1994), p. 867872.Google Scholar
4. Zhu, Q., Stiebig, H., Rieve, P., Giehi, J., Sonmmer, M., Böhm, M., Sensors and Control for Advanced Automation, edited by M. Becker, R. W. Daniel, O. Loffeld (Proc. SPIE 2247, 1994) p. 301–3 10.Google Scholar
5. Tsai, H.-K. and Lee, S.-C., Appl. Phys. Lett. 52, p. 275 (1988).Google Scholar
6. Stiebig, H., Giehl, J., Knipp, D., Rieve, P. and Böhm, M. in Amorphous Silicon Technology 1995, edited by M. Hack, E. Schiff, A. Madan, M. Powell, A. Matsuda (Mat. Res. Soc. Symp. Proc. 377, Pittsburgh, PA, 1995), p. 815826.Google Scholar
7. Rieve, P., Giehl, J., Zhu, Q. and Böhm, M., this conference.Google Scholar
8. Stiebig, H., Ulrichs, C., Kulessa, T., Fölsch, J., Finger, F. and Wagner, H., J. Non-Cryst. Solids, in print (1995).Google Scholar
9. Eberhard, K., Neidlinger, T. and Schubert, M., IEEE Trans. Electron Devices 42 (10), p. 1763 (1995).Google Scholar
10. Cesare, G. de, Irrera, F., Lemmi, F., Palma, F., Tucci, M. in Amorphous Silicon Technology 1994, edited by E. Schiff, M. Hack, A. Madan, M. Powell, A. Matsuda (Mat. Res. Soc. Symp. Proc. 336, Pittsburgh, PA, 1994), p. 885890.Google Scholar
11. Giehl, J., Stiebig, H., Rieve, P., Böhm, M., Thin Films, edited by Hecht, G., Richter, F., Hahn, J. (DGM Informationsgesellschaft, Oberursel, Germany, 1994) p. 560563.Google Scholar
12. Goodman, A. M., Rose, A., J. Appl. Phys. 42, p. 2823 (1971).Google Scholar