Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T16:32:07.655Z Has data issue: false hasContentIssue false

Towards Radiolabeled G∧C Module for Cellular Imaging of Bioactive Rosette Nanotubes

Published online by Cambridge University Press:  02 March 2011

Hicham Fenniri
Affiliation:
National Institute for Nanotechnology, Edmonton, T6G2M9, Canada Department of Chemistry, University of Alberta, Edmonton, T6G2M9, Canada
Get access

Abstract

Rosette nanotubes (RNTs) are obtained through the self-organization of biologically inspired self-complementary guanine-cytosine modules (G∧C motif) under physiological conditions. These architectures can express bioactive molecules on their surface by functionalizing the G∧C motif prior to self-assembly. As a result, RNTs are promising drug delivery vehicles for the treatment of diseases such as cancer and inflammatory disorders. Towards these studies, we have explored the toxicity and immunological response of RNTs and are now focused on understanding their cellular uptake, biological distribution and kinetics in vivo. For these investigations, we need to construct a RNT labeled with a radionuclide that can be followed in vivo by SPECT (single photon emission computed tomography) imaging. In this proceeding, we describe a twin G∧C motif that is functionalized with mercaptoacetyl triglycine (MAG3). This is a well known ligand which is able to form a stable chelate with the radionuclides 99mTc or 186/188Re. In order to develop the chemistry for this radiolabeling strategy for the RNTs, we demonstrate the chelation of the MAG3 functionalized twin-G∧C motif with cold rhenium and investigate the self-assembly properties of the complex into RNTs under aqueous conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Marsh, A.; Silvestri, M.; Lehn, J.-M. Chem. Comm. 1996., 15271528.Google Scholar
2. Mascal, M.; Hext, N. M.; Warmuth, R.; Moore, M. H.; Turkenburg, J. P. Angew. Chem. Int. Ed. 1996, 35, 22042206.Google Scholar
3. Fenniri, Hicham; Mathivanan, Packiarajan; Vidale, Kenrick L.; Sherman, Debra M.; Hallenga, Klaas; Wood, Karl V.; Stowell, Joseph G. JACS (2001), 123(16), 38543855.Google Scholar
4.(a) Fenniri, Hicham; Deng, Bo-Liang; Ribbe, Alexander E.; Hallenga, Klaas; Jacob, Jaby; Thiyagarajan, Pappannan. PNAS (2002), 99, 64876492. (b) Fenniri, Hicham; Deng, Bo-Liang; Ribbe, Alexander E. JACS (2002), 124(37), 11064–11072. (c) Moralez, Jesus G.; Raez, Jose; Yamazaki, Takeshi; Motkuri, R. Kishan; Kovalenko, Andriy; Fenniri, Hicham. JACS (2005), 127(23), 8307–8309. (d) Tikhomirov, Grigory; Yamazaki, Takeshi; Kovalenko, Andriy; Fenniri, Hicham. Langmuir (2008), 24(9), 4447–4450. (e) Beingessner, Rachel L.; Deng, Bo-Liang; Fanwick, Phillip E.; Fenniri, Hicham. Journal of Organic Chemistry (2008), 73(3), 931–939. Google Scholar
5.(a) Journeay, W. Shane; Suri, Sarabjeet S.; Moralez, Jesus G.; Hicham, Fenniri; Singh, Baljit. International Journal of Nanomedicine (2008), 3(3), 373383. (b) Journeay, W. Shane; Suri, Sarabjeet S.; Moralez, Jesus G.; Fenniri, Hicham; Singh, Baljit. Small (2008), 4(6), 817–823. Google Scholar
6.(a) Chun, Ai Lin; Moralez, Jesus G.; Webster, Thomas J.; Fenniri, Hicham. Biomaterials (2005), 26(35), 7304-7309. (b) Chun, Ai Lin; Moralez, Jesus G.; Fenniri, Hicham; Webster, Thomas J. Nanotechnology (2004), 15(4), S234-S239. (c) Chun, Ai Lin; Moralez, Jesus G.; Webster, Thomas J.; Fenniri, Hicham. Nanotechnology in Biology and Medicine (2007), 2/1-2/22. (d) Zhang, Lijie; Ramsaywack, Sharwatie; Fenniri, Hicham; Webster, Thomas J. Tissue Engineering, Part A (2008), 14(8), 1353–1364. (e) Zhang, Lijie; Chen, Yupeng; Rodriguez, Jose; Fenniri, Hicham; Webster, Thomas J. International Journal of Nanomedicine (2008), 3(3), 323-333. (f) Zhang, Lijie; Rakotondradany, Felaniaina; Myles, Andrew J.; Fenniri, Hicham; Webster, Thomas J. Biomaterials (2009), 30(7), 1309-1320. Google Scholar
7. Pimlott, Sally L. and Sutherland, Andrew. Chem. Soc. Rev. Advanced article 2010.Google Scholar
8.(a) Guhlke, S., Schaffland, A., Zamora, P. O., Sartor, J., Diekmann, D., Bender, H., Knapp, F. F. and Biersack, H.-J.. Nuclear Medicine & Biology, 25, 621631, 1998. (b) R. Jankowsky, S. Kirsch, T. Reich, H. Spies, B. Johannsen. Journal of Inorganic Biochemistry 70 (1998) 99–106. (c) Lory Hansen, Renzo Cini, Andrew Taylor, Jr., and Luigi G. Marzilli. Inorg. Chem. 1992, 31, 2801–2808. (d) Guozheng Liu, Shuping Dou, Jiang He, Dongguang Yin, Suresh Gupta, Surong Zhang, Yi Wang, Mary Rusckowski, Donald J. Hnatowich. Applied Radiation and Isotopes 64 (2006) 971–978. (e) Julien Le Gal and Eric Benoist. Eur. J. Org. Chem. 2006, 1483–1488. Google Scholar