Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T22:11:13.968Z Has data issue: false hasContentIssue false

Towards an All-Hot-Wire TFT: Silicon Nitride and amorphous Silicon deposited by Hot-Wire Chemical Vapor Deposition

Published online by Cambridge University Press:  17 March 2011

B. Stannowski
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P. O. Box 80000, 3508 TA Utrecht, the Netherlands
M.K. van Veen
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P. O. Box 80000, 3508 TA Utrecht, the Netherlands
R.E.I. Schropp
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P. O. Box 80000, 3508 TA Utrecht, the Netherlands
Get access

Abstract

We present thin-film transistors with both amorphous silicon and silicon nitride deposited by hot-wire chemical vapor deposition. Hot-wire amorphous silicon with good electrical properties was deposited from the decomposition of silane at a substrate temperature of 250°C. For Hot-wire silicon nitride we used silane and ammonia at a substrate temperature of 340°C. In this paper we address structural and electrical properties of this material. A high ammonia flow results in porous films that exhibit post-deposition oxidation. By limiting the ammonia/silane ratio to 30, compact layers with a hydrogen content of only 10 at.% and a refractive index of 1.95 are obtained. Using this layer as gate dielectric results in thin-film transistors with good switching behavior and a field-effect mobility of 0.3 cm2/Vs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsumura, H., Jpn. J. Appl. Phys. 37, 3175 (1998).10.1143/JJAP.37.3175Google Scholar
2. Nelson, B.P., Iwaniczko, E., Mahan, A.H., Wang, Q., Xu, Y., Crandall, R.S., Branz, H.M., Proc. First Int. Conf. on Cat-CVD (Hot-Wire CVD) Process, Kanazawa, Japan, 291294 (2000).Google Scholar
3. Ledermann, A., Weber, U., Mukherjee, C., Schroeder, B., as Ref. 2, 5154 (2000).Google Scholar
4. Meiling, H., Schropp, R.E.I., Appl. Phys. Lett. 70, 2681 (1997).Google Scholar
5. Stannowski, B., Nascetti, A., Schropp, R.E.I., Appl. Phys. Lett. 75, 3674 (1999).Google Scholar
6. Stannowski, B., Rath, J.K., Schropp, R.E.I., as Ref. 2, 265268 (2000).Google Scholar
7. Okada, S., Matsumura, H., Jpn. J. Appl. Phys. 36, 7035 (1997).Google Scholar
8. Deshpande, S.V., Dupuie, J.L., Gulari, E., Appl. Phys. Lett. 61, 1420 (1992).Google Scholar
9. Sakai, M., Tsutsumi, T., Yoshioka, T., Matsuda, A., Matsumura, H., as Ref. 2, 311314 (2000).Google Scholar
10. Schropp, R.E.I., Feenstra, K.F., Molenbroek, E. C., Meiling, H., Rath, J. K., Philos. Mag. B 76, 309 (1997).Google Scholar
11. Feenstra, K.F., Schropp, R.E.I., Weg, W.F. van der, J. Appl. Phys. 85, 6843 (2000).Google Scholar
12. Veen, M.K. van, Schropp, R.E.I., this proceedings.Google Scholar
13. Robertson, J., Powell, M.J., Appl. Phys. Lett. 44, 415 (1983).Google Scholar
14. Robertson, J., Philos. Mag. B 63, 47 (1991).Google Scholar
15. Devlin, J.P., Joyce, C., Buch, V., J. Phys. Chem A 104, 1974 (2000).Google Scholar
16. Liao, W.-S., Lin, C.-H., Lee, S.-C., Appl. Phys. Lett 65, 2229 (1994).Google Scholar
17. Dupuie, J.L., Gulari, E., Terry, F., J. Electrochem. Soc. 139, 1151 (1992).10.1149/1.2069356Google Scholar
18. Sze, S.M., in Physics of Semiconductor Devices, 2nd edition (Wiley, New York, 1981).Google Scholar
19. Yokoyama, S., Kajihara, N., Hirose, M., Osaka, Y., J. Appl. Phys 51, 5470 (1980).10.1063/1.327505Google Scholar
20. Maeda, M., Arita, Y., J. Appl. Phys 53, 6852 (1982).10.1063/1.330024Google Scholar
21. Nicollian, E.H., Brews, J.R., in MOS (Metal Oxide Semiconductor) - Physics and Technologie, 1st edition (Wiley, New York, 1982).Google Scholar
22. Stannowski, B., Schropp, R.E.I., Thin Solid Films 383, 125 (2001).Google Scholar
23. Doyle, J., Robertson, R., Lin, G.H., He, M.Z., Gallager, A., J. Appl. Phys. 64, 3215 (1988).Google Scholar
24. Brockhoff, A.M., Weg, W.F. van der, Habraken, F.H.P.M., J. Appl. Phys. 89, 2993 (2001). A.M. Brockhoff, PhD thesis, Utrecht, the Netherlands (2001).10.1063/1.1342807Google Scholar