Skip to main content Accessibility help

Titanium Nitride Epitaxy on Tungsten (100) by Sublimation Crystal Growth

  • Lisa Mercurio (a1), James H. Edgar (a2), Li Du (a3) and E. A. Kenik (a4)


Titanium nitride crystals were grown from titanium nitride powder on tungsten by the sublimation-recondensation technique. The bright golden TiN crystals displayed a variety of shapes including cubes, truncated tetrahedrons, truncated octahedrons, and tetrahedrons bounded by (111) and (100) crystal planes. The TiN crystals formed regular, repeated patterns within individual W grains that suggested epitaxy. X-ray diffraction and electron backscattering diffraction revealed that the tungsten foil was highly textured with a preferred foil normal of (100) and confirmed that the TiN particles deposited epitaxially with the orientation TiN(100)‖W(100) and TiN[100]‖W[110], that is, the unit cells of the TiN crystals were rotated 45° with respect to the tungsten. Because of its larger coefficient of thermal expansion compared to W, upon cooling from the growth temperature, the TiN crystals were under in-plane tensile strain, causing many of the TiN crystals to crack.



Hide All
1. Edgar, J.H., Liu, L., Liu, B., Zhuang, D., Chaudhuri, J., Kuball, M., and Rajasingam, S., J. Cryst. Growth 246, 187 (2002).
2. Semmelroth, K., Schulze, N., and Pensl, G., J. Phys.: Condens. Matter 16, S1597 (2004).
3. Gu, Zheng, Edgar, J.H., Pomeroy, J., Kuball, M., and Coffey, D.W., J. Mater. Sci.: Mater. Elec. 15, 555 (2004).
4. Gu, Z., Edgar, J.H., Coffey, D.W., Chaudhuri, J., Nyakiti, L., Lee, R.G., and Wen, J.G., J. Cryst. Growth 293, 242 (2006).
5. LeClair, Patrick R., Titanium Nitride Thin Films by the Electron Shower Process, Bachelorís thesis, Massachusetts Institute of Technology, 1998.
6. Patsalas, P. and Logothetidis, S., J. Appl. Phys. 90, 4725 (2001).
7. Toth, L.E., Transition Metal Carbides and Nitrides, (Academic Press, New York, 1971) p. 7.
8. Hultman, L., Vacuum 57, 1 (2000).
9. Piscanec, S., Ciacchi, L.C., Vesselli, E., Comelli, G., Sbaizero, O., Meriani, S., and De Vita, A., Acta Materilia 52, 1237 (2004).
10. Motojima, S., Baba, K., Kitatani, K., Takahashi, Y., and Sugiyama, K., J. Cryst. Growth 32, 141 (1976).
11. Narayan, J., Tiwari, P., Chen, X., Singh, J., Chowdhury, R., and Zheleva, T., Appl. Phys. Lett. 61, 1290 (1992).
12. Zheleva, T., Jagannadham, K., and Narayan, J., J. Appl. Phys. 75, 860 (1994).
13. Chase, M.W. Jr, Journal of Physical and Chemical Reference Data, NIST-JANAF Thermochemical Tables, 4th ed. (American Chemical Society and American Institute of Physics, Washington D.C., 1998) p. 5962, 129–130, 1612–1614, 1907–1912.
14. Wang, Kai and Reeber, Robert R., Mater. Sci. Eng. Rep. R23, 101 (1998).
15. Liu, L., Liu, B., Edgar, J.H., Rajasingam, S., and Kuball, M., J. Appl. Phys. 92, 5183 (2002).
16. Freund, L.B. and Suresh, S., Thin Film Materials, (Cambridge Univ. Press, Cambridge, 2003).


Titanium Nitride Epitaxy on Tungsten (100) by Sublimation Crystal Growth

  • Lisa Mercurio (a1), James H. Edgar (a2), Li Du (a3) and E. A. Kenik (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed