Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T23:39:05.776Z Has data issue: false hasContentIssue false

TiO2 Nanotube Films via Laser Ablation for Solar Cells

Published online by Cambridge University Press:  31 January 2011

Sanjaya D. Perara
Affiliation:
dsp081000@utdallas.edu, University of Texas at Dallas, Chemistry, Richardson, Texas, United States
Kenneth Balkus
Affiliation:
balkus@utdallas.edu
Get access

Abstract

Titanium dioxide (TiO2) nanostructures are widely employed in photoconversion processes. In particular titanium dioxide nanotubes (TNTs) have shown promise in many applications including solar cells. While there are methods for making TNT films the preparation of high surface area small diameter (<10nm) TNT films is a challenge. We have now prepared TNT films by pulsed laser deposition (PLD) of P25 and P90 TiO2TiO2 nanoparticles onto stainless steel foils followed by a hydrothermal treatment. The best results were obtained when the TiO2TiO2 films were deposited at 500°C. Subsequent hydrothermal treatment at 150°C results in a dense mat of TNTs that are ˜10 nm in diameter with a pore size of ˜5 nm. The TNTs were further functionalized with quantum dots including PbS with controlled particle size and location to access a greater portion of the solar spectrum. The titanium oxide nanotube/ quantum dot films were characterized by SEM, TEM, XRD UV-Vis and Raman spectroscopy. Preliminary results for the formation and characterization of solar cells using the TNT films will be described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 O'Regan, B., and Grätzel, M., Nature. 353, 737 (1991).Google Scholar
2 Wang, D. Yu, B. Zhou, F. Wang, C. and Liu, W. Mater. Chem. Phys. 113, 602 (2009).Google Scholar
3 Cherepy, N. J. Smestad, G. P. Grätzel, M., and Zhang, J. Z. J. Phys. Chem. B. 101, 9342 (1997).Google Scholar
4 Ratanatawanate, C. Xiong, C. and Balkus, K. J. Jr , ACS Nano. 2, 1682 (2008).Google Scholar
5 Yang, S. M. Huang, C. H. Zhai, J. Wang, Z. S. and Jiang, L. J. Mater. Chem. 12, 1459 (2002).Google Scholar
6 Plass, R. Pelet, S. Krueger, J. Grätzel, M., and Bach, U. J. Phys. Chem. B. 106, 7578 (2002).Google Scholar
7 Lee, H. Leventis, H. C. Moon, S. J. Chen, P. Ito, S. Haque, S. A. Torres, T. Nüesch, F., Geiger, T., Zakeeruddin, S. M. Grätzel, M., and Nazeeruddin, M. K. Adv. Funct. Mater. 19, 2735 (2009).Google Scholar
8 Kuang, D. Brillet, J. Chen, P. Takata, M. Uchida, S. Miura, H. Sumioka, K. Zakeeruddin, S. M., and Grätzel, M., ACS Nano. 2, 1113 (2008).Google Scholar
9 Liu, B. and Aydil, E. S. J. Am. Chem. Soc. 131, 3985 (2009).Google Scholar
10 Paulose, M. Prakasam, H. E. Varghese, O. K. Peng, L. Popat, K. C. Mor, G. K. Desai, T. A. and Grimes, C. A. J. Phys. Chem. C. 111, 14992 (2007).Google Scholar
11See for example, Balkus, K.J. Jr. , Gbery, G. Deng, S. Micropor. Mesopor. Mater., 52, 141150 (2002).Google Scholar
12 Paulose, M. Prakasam, H. E. Varghese, O. K. Peng, L. Popat, K. C. Mor, G. K. Desai, T. A. and Grimes, C. A. J. Phys. Chem. C. 111, 14992 (2007).Google Scholar
13 Ratanatawanate, C. Tao, Y. Balkus, K.J. Jr. , J. Phys. Chem. C, 113, 1075510760 (2009).Google Scholar