Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T12:52:41.108Z Has data issue: false hasContentIssue false

Time-Resolved Reflectivity Measurement of the Pressure-Enhanced Crystallization Rate of Amorphous Si in a Diamond Anvil Cell

Published online by Cambridge University Press:  26 February 2011

G. Q. Lu
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge MA 02138
E. Nygren
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge MA 02138
M. J. Aziz
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge TN 37831.
D. Turnbull
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge MA 02138
C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge TN 37831.
Get access

Abstract

We have measured the pressure dependence of the solid phase epitaxial growth (SPEG) rate of self-implanted Si (100) by using the in-situ time-resolved reflectivity technique [1] in a hightemperature and high-pressure diamond anvil cell (DAC). With fluid argon as the pressure transmission medium, a clean and perfectly hydrostatic pressure environment is achieved around the sample. The external heating geometry employed in the DAC provides a uniform temperature across the sample. At temperatures in the range of 530 – 550 °C and pressure up to 50 kbars (5 GPa), the growth rate is enhanced by up to a factor of ten over that at 1 atmosphere pressure. The results are characterized by a negative activation volume of approximately −3.0 cm3/mole (−27% of the atomic volume). These preliminary results show a significantly weaker pressure dependence than does the previous work of Nygren et al. [2], who found an activation volume of −8.7 cm3/mole. The implications of these results for the nature of the defect responsible for thermal SPEG and irradiation enhanced SPEG is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Olson, G. L., Kokorowski, S. A., Roth, J. A., and Hess, L. D., in Mat. Res. Soc. Symp. Proc. 13, 141 (1983).Google Scholar
[2] Nygren, E., Aziz, M. J., Turnbull, D., Poate, J. M., Jacobson, D. C., and Hull, R., Appl. Phys. Lett., 47, 232 (1985).Google Scholar
[3] Fratello, V. J., Hays, J. F., and Turnbull, D., J. Appl. Phys. 51, 4718 (1980).Google Scholar
[4] Vasin, A. S., Okulich, V. I., Panteleev, V. A., and Tetel'baum, D. I., Sov. Phys. Solid State 27, 168 (1985).Google Scholar
[5] Licoppe, C. and Savary, H., Appl. Phys. Lett. 51, 740 (1987).CrossRefGoogle Scholar
[6] Olson, G. L., Kokorowski, S. A., McFarlane, R. A., and Hess, L. D., Appl. Phys. Lett. 27, 1019 (1980).CrossRefGoogle Scholar
[7] Piermarini, G. J. and Block, S., Rev. Sci. Instrum. 46, 973 (1975).Google Scholar
[8] Forman, R. A., Piermarini, G. J., Barnett, J. D., and Block, S., Science 176, 284 (1972).Google Scholar
[9] Lulli, G., Merli, P.G., and Antisari, M. Vittori, these proceedings (Mat. Res. Soc. Symp. Proc. 100 (1988).)Google Scholar
[10] Ferla, A. La, Rimini, E., Cannavo, S., and Ferla, G., these proceedings (Mat. Res. Soc. Symp. Proc. 100 (1988).)Google Scholar
[11] Pantelides, S. T., these proceedings (Mat. Res. Soc. Symp. Proc. 100 (1988).)Google Scholar
[12] Mosley, L. E. and Paesler, M. A., these proceedings (Mat. Res. Soc. Symp. Proc. 100 (1988).)Google Scholar
[13] Spaepen, F. and Turnbull, D., AIP Conf. Proc. 50, 73 (1979).CrossRefGoogle Scholar
[14] Linnros, J., Svensson, B. and Holmdé, G., Phys. Rev. B30, 3629 (1984).Google Scholar
[15] Williams, J.S., Elliman, R.G., Brown, W.L. and Seidel, T.E., Phys. Rev. Lett. 55, 1482 (1985).Google Scholar
[16] Scholz, A. and Seeger, A., Phys. Stat. Sol. 3, 1480 (1963).CrossRefGoogle Scholar