Hostname: page-component-6d856f89d9-gndc8 Total loading time: 0 Render date: 2024-07-16T04:07:29.826Z Has data issue: false hasContentIssue false

Time-Resolved and Nicrostructural Studies of Solidification in Undercooled Liquid Silicon

Published online by Cambridge University Press:  26 February 2011

D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
R. F. Wood
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
G. E. Jellison Jr.
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
S. P. Withrow
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

Nanosecond resolution visible (633 nm) and near-infrared (1152 nm) reflectivity measurements have been used, together with transmission electronmicroscopy (TEM), to study pulsed KrF (248 nm) laser melting and subsequent solidification of thick (190–410 nm) amorphous (a) silicon layers. The measurements cover the entire laser energy density (El) range between the onset of melting (∼ 0.12 J/cm2) and the completion of epitaxial crystallization (∼1.1 J/cm2). Four distinct El-regimes of melting and solidification are found for the 410-nm thick a-Si layers. For El > 0.25 J/cm2, the time of formation, velocity and final depth of “explosively” propagating undercooled liquid layers were measured in specimens that had been uniformly implanted with Si, Ge, or Cu. TEM shows that the “fine-grained polycrystalline Si” produced by explosive crystallization (XC) actually contains large numbers of disk-shaped Si flakes that have largely amorphous centers and are visible only in plan view. The optical and TEM measurements suggest (1) that flakes are the crystallization events that initiate XC, and (2) that lateral heat flow (parallel to the sample surface) must be taken into account in order to understand flake formation. Results of new two-dimensional (2-D) model calculations of heat flow and solidification are presented. These calculations confirm the importance of 2-D heat flow and crystallite growth early in the solidification process. For 0.3 4 < El > 1.0 J/cm2, pronounced changes in both the shape and the duration of the reflectivity signals provide information about the growth of polycrystalline grains; this information can be correlated with post-irradiation plan and cross-section view TEM microstructural measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lowndes, D. H., Wood, R. F., and Narayan, J., Phys. Rev. Lett. 52, 561 (1984).CrossRefGoogle Scholar
2. Lowndes, D. H., Jellison, G. E. Jr., Wood, R. F., and Carpenter, R., Proc. 17th Int. Conf. on Physics of Semiconductors (Springer-Verlag, 1985) p. 1497.Google Scholar
3. Lowndes, D. H., Jellison, G. E. Jr., Wood, R. F., and Pennycook, S. J., and Carpenter, R. F., Mat. Res. Soc. Symp. Proc. 35, 101 (1985). Note: The 190-nm a-layer thickness mentioned in the caption to Fig. 4 of this reference (and in its discussion in the text) is incorrect; the correct thickness was 440 nm.Google Scholar
4. Campisano, S. U., Jacobson, D. C., Poate, J. M., Cullis, A. G., and Chew, N. G., Appl. Phys. Lett. 45, 1217 (1984).Google Scholar
5. Campisano, S. U., Jacobson, O. C., Poate, J. M., Cullis, A. G., and Chew, N. G., Appl. Phys. Lett. 46, 846 (1985).Google Scholar
6. Narayan, J., J. Vac. Sci. Technol. A4, 61 (1986).CrossRefGoogle Scholar
7. Peercy, P. S., Poate, J. M., Thompson, M. O., and Tsao, J. T., Appl. Phys. Lett. 48, 1651 (1986).Google Scholar
8. Peercy, P. S., Thompson, M. O., Tsao, J. Y., and Poate, J. M., Proc. Mater. Res. Soc. 51, 125 (1986). See also M. O. Thompson, J. W. Mayer, A. G. Cullis, H. C. Webber, N. G. Chew, J. M. Poate, and D. C. Jacobson, Phys. Rev. Lett. 50, 896 (1983).Google Scholar
9. Wood, R. F., Lowndes, D. H., and Narayan, J., Appl. Phys. Lett. 44, 770 (1984).Google Scholar
10. Narayan, J. and White, C. W., Appl. Phys. Lett. 44, 35 (1984).Google Scholar
11. Bruines, J.J.P., Hal, R.P.M. van, Koek, B. H., Viegers, M.P.A., and Boots, H.M.J., Mat. Res. Soc. Symp. Proc. 74, 91 (1987).Google Scholar
12. Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G., Chew, N. G., Phys. Rev. Lett. 52, 2360 1984).Google Scholar
13. Lowndes, D. H., Jellison, G. E. Jr., Pennycook, S. J., Withrow, S. P., Mashburn, D. N., and Wood, R. F., Mat. Res. Soc. Symp. Proc. 51, 131 (1986).Google Scholar
14. Lowndes, O. H., Jellison, G. E. Jr., Pennycook, S. J., Withrow, S. P., and Mashburn, D. N., Appl. Phys. Lett. 48, 1389 (1986).Google Scholar
15. Lowndes, D. H., Pennycook, S. J., Jellison, G. E. Jr., Withrow, S. P., and Mashburn, D. N., J. Mat. Res. 2, 648 (1987).Google Scholar
16. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 42, 698 (1983).CrossRefGoogle Scholar
17. Webber, H. C., Cullis, A. G., and Chew, N. G., Appl. Phys. Lett. 43, 669 (1983).Google Scholar
18. Papa, T., Scudieri, F., Marinelli, M., Zammit, U., and Cembali, G., private communication.Google Scholar
19. Goldsmit, H. J., Kaila, M. M., and Paul, G. L., Phys. Stat. Sol. (a) 76, K31 (1983).Google Scholar
20. Glassbrenner, C. J. and Slack, G. A., Phys. Rev. 134, A1058 (1964).Google Scholar
21. Wood, R. F. and Geist, G. A., Phys. Rev. Lett. 57, 873 (1986).Google Scholar
22. See Wood, R. F. and Geist, G. A., Phys. Rev. B 34, 2606 (1986).Google Scholar
23. Wood, R. F. et al, in preparation.Google Scholar
24. Pennycook, S. J. and Narayan, J., Appl. Phys. Lett. 45, 385 (1984).Google Scholar
25. See Larson, B. C., Tischler, J. Z., and Mills, D. M., J. Mater. Res. 1, 144 (1986) and G. J. Galvin, J. W. Mayer and P. S. Peercy, Appl,. Phys. Lett. 46, 644 (1985)Google Scholar
26. Lowndes, D. H. and Pennycook, S. J., submitted for publication.Google Scholar
27. Tsao, J. Y. and Peercy, P. S., Phys. Rev. Lett. 58, 2782 (1987).Google Scholar