Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-21T15:37:34.148Z Has data issue: false hasContentIssue false

Tight-Binding Calculation of the Electronic Structure of Semiconductor Nanocrystals

Published online by Cambridge University Press:  15 February 2011

P. E. Lippens
Affiliation:
Laboratoire de Physicochimie des Matériaux Solides, CNRS URA407, USTLII, Place Eugène Bataillon, F34095 Montpellier Cedex, France.
M. Lannoo
Affiliation:
Laboratoire de Physique des Surfaces et Interfaces, CNRS URA253, ISEN, Bvd Vauban, F59046 Lille Cedex, France.
Get access

Abstract

We show that an empirical tight-binding approximation can be used for the determination of some electronic properties of semiconductor nanocrystals. Two different calculations based on this approximation are presented. The first calculation concerns the band-gap energy and the second one the density of states. The results are given for different II-VI compounds and compared to available experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For recent reviews, see Steigerwald, M.L. and Brus, L.E., Acc. Chem. Res. 23, 183. (1990), Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991).Google Scholar
2. Brus, L.E., J. Chem. Phys. 80, 4403 (1984); Y. Kayanuma, Phys. Rev. B 38, 9797 (1988); 44, 13085 (1991); Y. Kayanuma and H. Momiji, Phys. Rev. B 41, 10261 (1990).Google Scholar
3. Vogl, P., Hjalmarson, H., and Dow, J.D., J. Phys. Chem. Solids 44, 365 (1983).Google Scholar
4. Haydock, R., Heine, V., and Kelly, M.J., J. Phys. C 5, 2845 (1972).CrossRefGoogle Scholar
5. Lippens, P.E. and Lannoo, M., Phys. Rev. B 39, 10935 (1989).CrossRefGoogle Scholar
6. Haken, H., Nuevo Cimento (Ser. 10) 3, 1320 (1956).Google Scholar
7. Experimental data for CdS: Rossetti, R., Ellison, J.L., Gibson, J.M., and Brus, L.E., J. Chem. Phys. 80, 4464 (1984); A.I. Ekimov, A.L. Efros, and A.A. Onushchenko, Solid State Com. 56, 921 (1985)Y. Wang and N. Herron, Phys. Rev. B 42, 7253 (1990); Y. Wang, A. Suna, J.McHugh, E.F. Hilinski, P.A. Lucas, and R.D. Johnson, J. Chem. Phys. 92, 6929 (1990); L. Katsikas, A. Eychmiiller, M. Giersig and H. Weller, Chem. Phys. Lett. 172, 201 (1990);;K. Misawa, H. Yao, T. Hayashi, and T. Kobayashi, J.Chem. Phys. 91, 4131 (1991)Google Scholar
8.Experimental data for CdSe: Borelli, N.F., Hall, D.W., Holland, H.J., and Smith, D.W., J. Appl. PhysM. 61, 5399 (1987); A.P. Alivisatos, T.D. Harris, L.E. Brus and A. Jayaraman, J. Chem. Phys.89, 5979 (1988); A.P. Alivisatos, T.D. Harris, P.J. Carroll, M.L. Steigerwald, and L.E. Brus, J. Chem. Phys. 90, 3463 (1989); N. Peyghambarian, B. Fluegel, D. Hulin, A. Migus, M. Joffre, A. Antonetti, S.W. Koch, and M. Lindberg, IEEE J. Quantum Electron. 25, 2516 (1989); S.H. Park, R.A. Morgan, Y.Z. Hu, M. Lindberg, S.W. Koch, and N. Peyghambarian, J. Opt. Soc. Amer. B7, 2097 (1990); M.G. Bawendi, P.J. Carrol, William L. Wilson, and L.E. Brus, J. Chem. Phys. 96, 946 (1992).Google Scholar
9.Experimental data for CdTe Neto, J.A. Medeiros, Barbosa, L.C., Cesar, C. L., Alves, O.L. and Galembeck, F., Appl. Phys. Lett. 59, 2715 (1991).Google Scholar
8. Wang, Y. and Herron, N., Phys. Rev. B42, 7253, (1990).Google Scholar