Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T16:39:58.221Z Has data issue: false hasContentIssue false

Three-dimensional Organic Field-effect Transistors on Plastic Substrates: Flexible Transistors with Very High Output Current

Published online by Cambridge University Press:  31 January 2011

Jun Takeya
Affiliation:
takeya@sanken.osaka-u.ac.jp, Osaka University, Dept. of Chemistry, Grad. School of Science, 1-1 Machikaneyama, Toyonaka, 560-0043, Japan, +81-6-6850-5398, +81-6-6850-6797
M. Uno
Affiliation:
uno@tri.pref.osaka.jp, TRI-Osaka, Izumi, Japan
Kengo Nakayama
Affiliation:
nakayama@chem.sci.osaka-u.ac.jp, Osaka University, Toyonaka, Japan
Get access

Abstract

Attractiveness of organic field-effect transistors are in their low-cost and easy fabrication processes as well as their mechanical flexibility, while a significant drawback has been their poorer transistor performances than those of silicon and oxide semiconductors because of lower carrier mobility in organic semiconductors. We have developed an easy MEMS-based process to fabricate three-dimensional organic transistors with metal-insulator-semiconductor structures of multiple vertical channels on plastic platforms. The design maximizes the space availability and the output current per area. The flexible three-dimensional organic transistors indeed present outstanding current of ∼ 0.5 A/cm2, which is more than sufficient for driving pixels of typical organic light-emitting diodes. High on-off ratio up to 107 is also demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lin, Y. Y., Gundlach, D. J., Nelson, S. F., and Jackson, T. N., IEEE Electron Device Lett. 18, 606 (1997).Google Scholar
2. Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W., and Weber, W., J. Appl. Phys. 92, 5259 (2002).Google Scholar
3. Anthony, J. E., Brooks, J. S., Eaton, D. L., and Parkin, S. R., J. Am. Chem. Soc. 123, 9482 (2001).Google Scholar
4. Yamamoto, T. and Takimiya, K., J. Am. Chem. Soc. 129, 2224 (2007).Google Scholar
5. Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J. A., and Gershenson, M. E., Phys. Rev. Lett. 93, 086602 (2004).Google Scholar
6. Takeya, J., Yamagishi, M., Tominari, Y., Hirahara, R., Nakazawa, Y., Nishikawa, T., Kawase, T., and Shimoda, T., Appl. Phys. Lett. 90, 102120 (2007).Google Scholar
7. Jurchescu, O. D., Popinciuc, M., Wees, B. J. van, and Palstra, T. T. M., Adv. Mater. (Weinheim, Ger.) 19, 688 (2007).Google Scholar
8. Uno, M., Tominari, Y., and Takeya, J., Appl. Phys. Lett. 93, 173301 (2008).Google Scholar
9. Uno, M., Doi, I., Takimiya, K., and Takeya, J., Appl. Phys. Lett. 94, 103307 (2009).Google Scholar
10. Kudo, K., Wang, D. X., Iizuka, M., Kuniyoshi, S., and Tanaka, K., Thin Solid Films 331, 51 (1998).Google Scholar
11. Parashkov, R., Becker, E., Hartmann, S., Ginev, G., Schneider, D., Krautwald, H., Dobbertin, T., Metzdorf, D., Brunetti, F., Schildknecht, C., Kammoun, A., Brandes, M., Riedl, T., Jo-hannes, H.-H., and Kowalsky, W., Appl. Phys. Lett. 82, 4579 (2003).Google Scholar
12. Naruse, H., Naka, S., and Okada, H., Appl. Phys. Express 1, 011801 (2008).Google Scholar