Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T04:39:58.848Z Has data issue: false hasContentIssue false

Three-dimensional calculation of field emission from carbon nanotubes using a transfermatrix methodology

Published online by Cambridge University Press:  21 March 2011

Alexandre Mayer
Affiliation:
Laboratoire de Physique du Solide, Facultes Universitaires N.-D. de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium
Nicholas M. Miskovsky
Affiliation:
Department of Physics, 104 Davey Lab, Penn State University, University Park, PA 16802, U.S.A.
Paul H. Cutler
Affiliation:
Department of Physics, 104 Davey Lab, Penn State University, University Park, PA 16802, U.S.A.
Get access

Abstract

We present simulations of field emission from carbon nanotubes, using a transfer-matrix methodology. By repeating periodically a basic unit of the nanotubes in the region preceding that containing the extraction field, specific band-structure effects are included in the distribution of incident states, i.e. those entering the field region. The structures considered are the metallic (5,5) and the semiconducting (10,0) single-wall carbon nanotubes. The total-energy distributions of incident states show the gap of the (10,0) and the expected flat region for the (5,5) nanotube. The field-emitted electron energy distributions contain peaks, which are sharper for the (10,0) structure. Except for peaks associated with van Hove singularities in the distribution of incident states or with the Fermi level in the case of a metallic structure, all peaks are shifted to lower energies by the electric field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] de Heer, W.A., Chatelain, A. and Ugarte, D., Science 270, 1179 (1995).Google Scholar
[2] Bonard, J.M., Salvetat, J.P., Stockli, T., Forro, L. and Chatelain, A., Appl. Phys. A 69, 245 (1999) and references therein.Google Scholar
[3] Fransen, M.J., van Rooy, Th.L. and Kruit, P., Appl. Surf. Sci. 146, 312 (1999) and references therein.Google Scholar
[4] Collins, P.G. and Zettl, A., Phys. Rev. B 55 (15), 9391–9 (1997).Google Scholar
[5] Adessi, Ch. and Devel, M., Phys. Rev. B 62 (20), 13314–7 (2000).Google Scholar
[6] Tamura, T. and Tsukada, M., Phys. Rev. B 52 (8), 6015–26 (1995).Google Scholar
[7] Carroll, D.L., Redlich, P., Ajayan, P.M., Charlier, J.C., Blase, X., De Vita, A. and Car, R., Phys. Rev. Lett. 78 (14), 2811–4 (1997).Google Scholar
[8] De Vita, A., Charlier, J.Ch., Blase, X. and Car, R., Appl. Phys. A 68, 283 (1999).Google Scholar
[9] Kim, Ph., Odom, T., Huang, J.L. and Lieber, C.M., Phys. Rev. Lett. 82 (6), 1225–8 (1999).Google Scholar
[10] Han, S. and Ihm, J., Phys. Rev. B 61, 9886 (2000).Google Scholar
[11]. Mayer, A., Senet, P. and Vigneron, J-P., J. Phys. Condens. Mat. 11 (44), 8617–31 (1999).Google Scholar
[12] Mayer, A. and Vigneron, J.-P., Phys. Rev. B 56 (19), 12599–607 (1997).Google Scholar
[13] Mayer, A. and Vigneron, J.-P., J. Phys. Condens. Mat. 10 (4), 869–81 (1998) ; Phys. Rev. B 60 (4), 2875–82 (1999); Phys. Rev. E 59 (4), 4659–66 (1999); Phys. Rev. E 61 (5), 5953–60 (2000).Google Scholar
[14] Bachelet, G.B., Greenside, H.S., Baraff, G.A. and Schluter, M., Phys. Rev. B 24 (8), 4745–52 (1981).Google Scholar
[15] Gravil, P.A., Lambin, Ph., Gensterblum, G., Henrard, L., Senet, P., Lucas, A.A., Surf. Sci 329, 199 (1995).Google Scholar
[16] Moussaddar, R., Charlier, A., McRae, E., Heyd, R. and Charlier, M.F., Synthetic Metals 89, 8186 (1997).Google Scholar
[17] Maiti, A., Brabec, C.J., Roland, C. and Bernholc, J., Phys. Rev. B 52 (20), 14850–8 (1995).Google Scholar
[18] Lou, L. and Nordlander, P., Phys. Rev. B 52 (3), 1429–32 (1995).Google Scholar
[19] Fowler, R.H. and Nordheim, L., Proc. R. Soc. London, Ser. A 119, 173 (1928);Google Scholar
Good, R.H. and Muller, E., Handb. Phys. 21, 176231 (1956).Google Scholar
[20] Ziman, J.M., Principles of the theory of solids (The University Press, Cambridge, 1964) p. 46.Google Scholar
[21] Dean, K.A., Groening, O., Kuttel, O.M. and Schlapbach, L., App. Phys. Lett. 75 (18), 2773–5 (1999).Google Scholar